
https://github.com/WebIII/10thBeerhallMvcAdv.git

 Store and Cart

 De use case Checkout

 TDD Cart – Checkout GET
◦ Model binding

◦ Viewmodels

 TDD Cart - Checkout POST

 TDD Register

Dia 2

The Store

 Index

Dia 4

 StoreController - Index

public class StoreController : Controller {

private readonly IBeerRepository _beerRepository;

public StoreController(IBeerRepository beerRepository) {

_beerRepository = beerRepository;

}

public ActionResult Index() {

return View(_beerRepository.GetAll().OrderBy(b => b.Name).ToList());

}

}

public interface IBeerRepository {

IEnumerable<Beer> GetAll();

Beer GetBy(int beerId);

}

public class ApplicationDbContext : IdentityDbContext<ApplicationUser> {

…

public DbSet<Brewer> Brewers { get; set; }

public DbSet<Beer> Beers { get; set; }

…

we willen nu rechtstreeks met Beers
werken, niet via Brewers

Dia 5

Dia 6

 Store – View - Index
@foreach (var beer in Model) {

<div class="col-md-6 col-xs-12">

<h3>

@beer.Name

@($"{beer.Price:N} €")

</h3>

<form asp-controller="Cart" asp-action="Add" asp-route-id="@beer.BeerId">

<div class="form-group pull-right">

<label class="sr-only" for="quantity">Quantity</label>

<input type="number" name="quantity" value="1" min="1" style="width:5em" />

<button type="submit" class="btn btn-default">

 Add to cart

</button>

</div>

</form>

</div>

}

wanneer we een beer met id 3 toevoegen
aan de cart wordt de URL: Cart/Add/3

quantity is onderdeel van de form data

commit Add Store - Index

The Cart

 Cart - Index

Dia 8

 CartController - Index
public IActionResult Index() {

Cart cart = ReadCartFromSession();

ViewData["Total"] = cart.TotalValue;

return View(cart.CartLines.Select(c => new IndexViewModel(c)).ToList());

}

public class IndexViewModel {

[HiddenInput]

public int BeerId { get;}

public int Quantity { get;}

public string Beer { get;}

public decimal Price { get;}

public decimal SubTotal { get;}

via een Select vormen we de
IEnumerable<CartLine> om tot een
IEnumerable<CartLineViewModel>we zullen de cart niet opslaan in de

databank maar gebruik maken van een
session…

Dia 9

 CartController – de cart session
◦ we gaan de session zo klein mogelijk houden via gepaste

annotaties in het domein

 zie Cart, CartLine, Beer

Dia 10

 CartController – de cart session
◦ telkens we de session lezen, halen we de producten (beers) op

via de repository

private Cart ReadCartFromSession() {

Cart cart = HttpContext.Session.GetString("cart") == null

? new Cart()

: JsonConvert.DeserializeObject<Cart>(HttpContext.Session.GetString("cart"));

foreach (var l in cart.CartLines)

l.Product = _beerRepository.GetBy(l.Product.BeerId);

return cart;

}

private void WriteCartToSession(Cart cart) {

HttpContext.Session.SetString("cart", JsonConvert.SerializeObject(cart));

}

Dia 11

 Cart – View - Index

<tbody>

@foreach (var line in Model) {

<tr>

<td class="text-right">@($"{line.Quantity} x")</td>

<td>@line.Beer</td>

<td class="text-right">@($"{line.Price:N2} €")</td>

<td class="text-right">@($"{line.SubTotal:N2} €")</td>

<td>

<form method="post" asp-action="Remove" asp-route-id="@line.BeerId">

<button type="submit" class="btn btn-xs"><span class="glyphicon-remove
glyphicon"> Remove</button>

</form>

</td>

</tr>

}

</tbody>

Dia 12

Dia 13

 CartController Add/Remove
[HttpPost]

public ActionResult Remove(int id) {

try {

Cart cart = ReadCartFromSession();

Beer product = _beerRepository.GetBy(id);

cart.RemoveLine(product);

TempData["message"] = $"{product.Name} was removed from your cart";

WriteCartToSession(cart);

}

catch {

TempData["error"] = "Sorry, something went wrong, the product was not removed from your cart...";

}

return RedirectToAction("Index");

}

[HttpPost]

public IActionResult Add(int id, int quantity = 1) {

try {

Cart cart = ReadCartFromSession();

Beer product = _beerRepository.GetBy(id);

if (product != null) {

cart.AddLine(product, quantity);

TempData["message"] = $"{quantity} x {product.Name} was added to your cart";

WriteCartToSession(cart);

}

}

catch {

TempData["error"] = "Sorry, something went wrong, the product could not be added to your cart...";

}

return RedirectToAction("Index", "Store");

}

commit Add Cart – Index/Add/Remove

 De cart wordt bijgehouden in een Session.
◦ Dit vormt een probleem voor het unit testen

◦ Oplossing?

 we kunnen gebruik maken van een mocking framework om de
session te mocken, of

 we kunnen gebruik maken van de MVC pipeline om de cart als
argument aan de action method door te geven

 de action methodes die de cart nodig hebben, krijgen die nu
aangeleverd via een Cart parameter

 dit zal leiden tot duidelijke en testable code in de controller:

public IActionResult Index(Cart cart) {

ViewData["Total"] = cart.TotalValue;

return View(cart.CartLines.Select(c => new IndexViewModel(c)).ToList());

}

Dia 14

 Hoe?

Action filters are ideal for any
logic that needs to see the
results of model binding, or
modify the controller or
inputs to an action method.
Additionally, action filters can
view and directly modify the
result of an action method.

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters Dia 15

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters

 Action filters
◦ implementeren IActionFilter of IAsyncActionFilter

◦ twee belangrijke methodes

 OnActionExecuting

 OnActionExecuted

The OnActionExecuting method runs before the action method, so it can manipulate the inputs to the

action by changing ActionExecutingContext.ActionArguments or manipulate the controller

through ActionExecutingContext.Controller. An OnActionExecuting method can short-circuit execution of

the action method and subsequent action filters by setting ActionExecutingContext.Result. Throwing an

exception in an OnActionExecutingmethod will also prevent execution of the action method and

subsequent filters, but will be treated as a failure instead of successful result.

The OnActionExecuted method runs after the action method and can see and manipulate the results

of the action through the ActionExecutedContext.Result property. ActionExecutedContext.Canceled will

be set to true if the action execution was short-circuited by another

filter. ActionExecutedContext.Exception will be set to a non-null value if the action or a subsequent action

filter threw an exception. Setting ActionExecutedContext.Exception to null effectively 'handles' an

exception, and ActionExectedContext.Result will then be executed as if it were returned from the action

method normally.

Dia 16

 Action filters

public override void OnActionExecuting(ActionExecutingContext context) {

_cart = ReadCartFromSession(context.HttpContext);

context.ActionArguments["cart"] = _cart;

base.OnActionExecuting(context);

}

public override void OnActionExecuted(ActionExecutedContext context) {

WriteCartToSession(_cart, context.HttpContext);

base.OnActionExecuted(context);

}

De HttpContext is onderdeel van de
ActionExecutingContext

De Cart parameter van de action method
krijgt dit argument aangereikt!

public class CartSessionFilter : ActionFilterAttribute {

private Cart _cart;

Dia 17

Dia 18

 Action filters
◦ we moeten de filter registreren als een service in de

RegisterServices methode van StartUp.cs…

◦ merk op dat je in de constructor van CartSessionFilter gebruik
kunt maken van DI

 we maken hier gebruik van om de BeerRepository te injecteren…

services.AddScoped<CartSessionFilter>();

public class CartSessionFilter : ActionFilterAttribute {

private readonly IBeerRepository _beerRepository;

private Cart _cart;

public CartSessionFilter(IBeerRepository beerRepository) {

_beerRepository = beerRepository;

}

private Cart ReadCartFromSession(HttpContext context) {

Cart cart = context.Session.GetString("cart") == null ?

new Cart() : JsonConvert.DeserializeObject<Cart>(context.Session.GetString("cart"));

foreach (var l in cart.CartLines)

l.Product = _beerRepository.GetBy(l.Product.BeerId);

return cart;

}

Dia 19

 we kunnen nu de nodige action methods decoreren
met het ServiceFilter attribuut
◦ ipv alle action methods te decoreren kunnen we het attribuut

boven de klasse plaatsen…

◦ het resultaat zijn unit testable action methods, voorbeeld Add

[HttpPost]

public IActionResult Add(Cart cart, int id, int quantity = 1) {

try {

Beer product = _beerRepository.GetBy(id);

if (product != null) {

cart.AddLine(product, quantity);

TempData["message"] = $"{quantity} x {product.Name} was added to your cart";

}

}

catch {

TempData["error"] = "Sorry, something went wrong, the product could not be added to your cart...";

}

return RedirectToAction("Index", "Store");

}

[ServiceFilter(typeof(CartSessionFilter))]

public class CartController : Controller {

…

Dia 20

 CartController – de unit testen
◦ voorbeeld

[Fact]

public void Add_RedirectsToActionIndexInStore() {

var actionResult = _controller.Add(_cart, 1) as RedirectToActionResult;

Assert.Equal("Index", actionResult?.ActionName);

Assert.Equal("Store", actionResult?.ControllerName); }

[Fact]

public void Add_AddsProductToCart() {

_beerRepository.Setup(b => b.GetBy(1)).Returns(_context.BavikPils);

_controller.Add(_cart, 1, 4);

Assert.Equal(2, _cart.NumberOfItems);

}

commit Refactor CartController ...

UC Checkout

 Check out Use case – Normaal verloop
1. Actor kiest om naar de kassa te gaan
2. Het systeem valideert
3. Systeem vraagt actor om in te loggen
4. Actor heeft username en wachtwoord in
5. Systeem valideert
6. Systeem vraagt klant de leveringsdetails in te geven

(leveringsadres, leveringsdatum (indien gewenst, minstens 3
dagen en niet op zondag), al dan niet kadoverpakking)

7. Klant vult gegevens in
8. Systeem valideert
9. Systeem registreert winkelmandje als order in de database
10. Systeem ledigt winkelmandje
11. Systeem bevestigt order Alternatief :

Actor moet zich eerst registreren
Dia 22

 Controllers (routing)

Worden telkens 2 methodes
in de Controller :

- GET (tonen van formulier)

- POST (Posten van formulier
data)

Dia 23

 Stappenplan uitwerken van de UC
1. Ontwerp van de UI

2. Ontwerp van domein en controllers

3. Domein aanpassen waar nodig – TDD [commit]

4. DbSet aggregate root/mapping/migratie/initializer [commit]

5. Extra repositories, helpers, ... [commit]

6. Controller – TDD & View [commit]

Dia 24

Stappenplan uitwerken van de UC

1. Ontwerp van de UI

2. Ontwerp van domein en controllers

3. Domein aanpassen waar nodig – TDD [commit]

4. DbSet aggregate root/mapping/migratie/initializer [commit]

5. Extra repositories, helpers, ... [commit]

6. Controller - TDD & View [commit]

Dia 26

Stappenplan uitwerken van de UC

1. Ontwerp van de UI

2. Ontwerp van domein en controllers

3. Domein aanpassen waar nodig – TDD [commit]

4. DbSet aggregate root/mapping/migratie/initializer [commit]

5. Extra repositories, helpers, ... [commit]

6. Controller - TDD & View [commit]

Dia 28

Dia 29

Stappenplan uitwerken van de UC

1. Ontwerp van de UI

2. Ontwerp van domein en controllers

3. Domein aanpassen waar nodig – TDD [commit]

4. DbSet aggregate root/mapping/migratie/initilializer [commit]

5. Extra repositories, helpers, ... [commit]

6. Controller - TDD & View [commit]

Dia 31

 TDD van Checkout - Domain
◦ Nieuwe klassen Customer, ICustomerRepository, Order en

Orderline

◦ Bekijk de unit testen

◦ Oefening:

 schrijf unit testen voor Customer

commit Add Domain classes...

 Tip
◦ Om te zien wat er in deze commit is aangepast/toegevoegd :

 Klik onderaan footer bar op master > View History

Dia 32

 Tip
 Rechtsklik de commit “Add domein classes and unit tests” > View

commit details. Dit toont alle gewijzigde, toegevoegde bestanden.

Klikken op een file toont de
code igv [add]. Igv [update]
kan je ook de wijzigingen
zien tov de vorige commits.

Dia 33

Stappenplan uitwerken van de UC

1. Ontwerp van de UI

2. Ontwerp van domein en controllers

3. Domein aanpassen waar nodig – TDD [commit]

4. DbSet aggregate root/mapping/migratie/initializer [commit]

5. Extra repositories, helpers, ... [commit]

6. Controller - TDD & View [commit]

 TDD van Checkout - Data
◦ OrderConfiguration, OrderLineConfiguration en

CustomerConfiguration werden toegevoegd
◦ In ApplicationDbContext wordt gezorgd dat deze

configurations toegepast worden.

◦ herhaal, bekijk en begrijp voor bv. CustomerConfiguration
 Name, Firstname, Email zijn verplicht en maximaal 100 karakters

 Customer - Location is optioneel, wanneer een location wordt
verwijderd, wordt de location voor de desbetreffende customers
null

 Customer – Order, een order moet verplicht tot een customer
behoren, wanneer een customer wordt verwijderd, worden
automatisch al zijn orders verwijderd

Dia 35

 TDD van Checkout - Data
◦ Er werd een DbSet voor onze aggregate root Customer

toegevoegd aan de Context

◦ De CustomerRepository : ICustomerRepository werd
geïmplementeerd

Dia 36

Dia 37

 TDD van Checkout - Data
◦ Initializer: toevoegen van een Customer

eMailAddress = "jan@hogent.be";

user = new ApplicationUser { UserName = eMailAddress, Email = eMailAddress };

await _userManager.CreateAsync(user, "P@ssword1");

await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "customer"));

var customer = new Customer {

Email = eMailAddress,

FirstName = "Jan",

Name = "De man",

Location = _dbContext.Locations.SingleOrDefault(l => l.PostalCode == "9700"),

Street = "Nederstraat 5"

};

_dbContext.Customers.Add(customer);

_dbContext.SaveChanges();

commit Adjust the data layer

Stappenplan uitwerken van de UC

1. Ontwerp van de UI

2. Ontwerp van domein en controllers

3. Domein aanpassen waar nodig – TDD [commit]

4. DbSet aggregate root/mapping/migratie/initializer [commit]

5. Extra repositories, helpers, ... [commit]

6. Controller – TDD & View [commit]

 TDD van Checkout HttpGet - ViewModels
◦ Er moet een formulier gepresenteerd worden waarop de

gebruiker de checkout details kan ingeven

 street

 location (dropdown list)

 gift wrapping

 date of delivery

◦ Checkout is enkel toegankelijk voor geauthenticeerde
gebruikers die tot de rol customer behoren

Dia 40

 TDD van Checkout HttpGet - ViewModels
◦ We maken gebruik van een CheckoutViewModel

◦ Het viewmodel bevat de properties voor street, postal code
(~location), gift wrapping en date of delivery én deze keer
geven we ook de SelectList met locations door via dit
viewmodel.

Dia 41

 TDD van Checkout HttpGet - ViewModels
◦ We maken gebruik van een CheckoutViewModel

namespace Beerhall.Models.ViewModels.CartViewModels {

public class CheckOutViewModel {

public DateTime? DeliveryDate { get; set; }

public string ShippingStreet { get; set; }

public string ShippingPostalCode { get; set; }

public bool Giftwrapping { get; set; }

public SelectList Locations { get; }

public CheckOutViewModel(IEnumerable<Location> locations, DateTime? deliveryDate = null,

bool giftWrapping = false, string shippingStreet=null, string shippingPostalCode = null) {

Locations = new SelectList(locations,

nameof(Location.PostalCode),

nameof(Location.Name),

shippingPostalCode);

DeliveryDate = deliveryDate;

Giftwrapping = giftWrapping;

ShippingStreet = shippingStreet;

ShippingPostalCode = ShippingPostalCode;

}

}

}

De SelectList als onderdeel van het
ViewModel

Optionele parameters: krijgen de
opgegeven waarde indien er voor de
parameter geen argument wordt voorzien

Dia 42

 TDD van Checkout HttpGet - ViewModels
◦ We maken gebruik van een CheckoutViewModel

 HttpGet☺

 dit VM bevat alles dat moet aangereikt worden aan de view

 we hoeven geen extra data via de ViewData door te geven

 HttpPost

 dit VM bevat te veel

 de selectlist met Locations heeft read-only purpose

 we willen er voor zorgen dat de MVC model binder enkel de inputs
van het formulier bindt

Dia 43

 TDD van Checkout HttpGet - ViewModels
◦ We maken gebruik van een CheckoutViewModel

namespace Beerhall.Models.ViewModels.CartViewModels {

public class CheckOutViewModel {

public SelectList Locations { get; }

public ShippingViewModel ShippingViewModel { get; set; }

public CheckOutViewModel(IEnumerable<Location> locations, ShippingViewModel shippingViewModel) {

Locations = new SelectList(locations,

nameof(Location.PostalCode),

nameof(Location.Name),

shippingViewModel?.PostalCode);

ShippingViewModel = shippingViewModel;

}

}

public class ShippingViewModel {

public DateTime? DeliveryDate { get; set; }

public bool Giftwrapping { get; set; }

public string Street { get; set; }

public string PostalCode { get; set; }

}

}

We kunnen de onderdelen die we via de
HttpPost willen ontvangen in een apart
ViewModel opnemen

Dit willen we via de HttpPost form data
binnenkrijgen

Dia 44

 TDD van Checkout HttpGet – Unit testen method
Checkout
◦ De testen

[Fact]

public void Checkout_EmptyCart_RedirectsToIndexOfStore()

{

var actionResult = _controller.Checkout(new Cart()) as RedirectToActionResult;

Assert.Equal("Index", actionResult?.ActionName);

Assert.Equal("Store", actionResult?.ControllerName);

}

[Fact]

public void Checkout_NonEmptyCart_PassesACheckOutViewModelInViewResultModel()

{

var actionResult = _controller.Checkout(_cart) as ViewResult;

var model = actionResult?.Model as CheckOutViewModel;

Assert.Null(model.ShippingViewModel.DeliveryDate);

Assert.Null(model.ShippingViewModel.PostalCode);

Assert.Null(model.ShippingViewModel.Street);

Assert.False(model.ShippingViewModel.Giftwrapping);

Assert.Equal(3, model.Locations.Count());

}

commit Add unit tests for
Cart/Checkout - HttpGet Dia 45

Dia 46

 TDD van Checkout HttpGet – Implementatie Checkout
public IActionResult Checkout(Cart cart) {

if (cart.NumberOfItems == 0)

return RedirectToAction("Index", "Store");

IEnumerable<Location> locations = _locationRepository.GetAll().OrderBy(l => l.Name).ToList();

return View(new CheckOutViewModel(locations, new ShippingViewModel()));

}

commit Implement
Cart/Checkout - HttpGet

 TDD van Checkout HttpGet – Display & Validatie
◦ Voeg display en validatie annotaties toe aan het

ShippingViewModel

Dia 47

 TDD van Checkout HttpGet – View
◦ Maak gebruik van scaffolding voor de Checkout view aan te

maken bij het toevoegen van de view

Kies ShippingViewModel, indien je
CheckoutViewModel kiest heb je weinig aan
de scaffolding…

Dia 48

 TDD van Checkout HttpGet – View
◦ Maak gebruik van scaffolding voor de Checkout view aan te

maken (right-mouse-click op folder Cart, kies MVC View)

Dit resultaat van de scaffolding kunnen we
nu naar onze wensen aanpassen…

Dia 49

 TDD van Checkout HttpGet – View
◦ Aanpassen van de scaffolded view

@model Beerhall.Models.CartViewModels.ShippingViewModel

@{

ViewData["Title"] = “Checkout";

}

<h2>Checkout</h2>

<h4>ShippingViewModel</h4>

<hr />

<div class="row">

<div class="col-md-4">

<form asp-action="ViewMe">

<div asp-validation-summary="ModelOnly" class="text-danger"></div>

<div class="form-group">

<label asp-for="DeliveryDate" class="control-label"></label>

<input asp-for="DeliveryDate" class="form-control" />

</div>

<div class="form-group">

<div class="checkbox">

<label>

<input asp-for="Giftwrapping" /> @Html.DisplayNameFor(model => model.Giftwrapping)

</label>

</div>

</div>

<div class="form-group">

Dit moeten we wijzigen in CheckoutViewModel

Alle deze properties moeten we nu laten
voorafgaan door @Model.ShippingViewModel.,
een slimme find/replace doet dit in 1 keer voor
ons…

De default method is HttpPost☺

Dia 50

<div class="form-group">

<label asp-for="PostalCode" class="control-label"></label>

<input asp-for="PostalCode" class="form-control" />

</div>

<div class="form-group">

<input type="submit" value="Create" class="btn btn-default" />

</div>

</form>

</div>

</div>

<div>

<a asp-action="Index">Back to List

</div>

@section Scripts {

@{await Html.RenderPartialAsync("_ValidationScriptsPartial");}

}

Dia 51

 TDD van Checkout HttpGet – View
◦ Aanpassen van de scaffolded view

Hier voegen we onze dropdownlist in

op een asynchrone manier worden de jQuery validation libraries
scripts aangeleverd voor _Layout.

_ValidationScriptsPartial is een partial view, die je in de folder
Views/Shared vindt. We behandelen partial views nog verderop... commit Add the Checkout form

 TDD van Checkout HttpGet – View
◦ Run de applicatie

 ga in de Browser naar “bron weergeven”

 name attributen beginnen nu allemaal met ShippingViewModel. Bvb
ShippingViewModel.Street; De Id’s met ShippingViewModel_

 vul het formulier in, ga naar developer tools > Netwerk, klik op
submit

Dia 52

 TDD van Checkout HttpGet – Auth
◦ enkel de ingelogde users die customer zijn kunnen van de

checkout gebruik maken

 we kunnen gebruik maken van de policy die we in hoofdstuk 9
hebben gemaakt

 indien er geen user is ingelogd gaat de Identity middleware
ervoor zorgen dat we automatisch omgeleid worden naar de inlog
pagina

 in de initializer hebben we reeds een IdenityUser aangemaakt die
customer is (via claim), als deze inlogt kom je terug bij de
checkout…

[Authorize(Policy = "Customer")]

public IActionResult Checkout(Cart cart) { …

eMailAddress = "jan@hogent.be";

user = new ApplicationUser { UserName = eMailAddress, Email = eMailAddress };

await _userManager.CreateAsync(user, "P@ssword1");

await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "customer"));

Dia 53

 TDD van Checkout HttpGet – Auth

◦ wanneer het order wordt geplaatst zal onze Customer zijn
verantwoordelijkheid nemen en een order creëren en deze
toevoegen aan zijn lijst van orders…

Dia 54

 TDD van Checkout HttpPost
◦ In de Checkout Post zal de Customer moeten beschikbaar zijn

 verantwoordelijk voor het aanmaken van het nieuwe Order

 persisteren van zijn Order

 via de HttpContext kunnen we aan de ingelogde ApplicationUser,
en via het email adres kunnen we de Customer ophalen uit de
repository

 ook nu willen we dit niet in de CartController doen want we willen
deze unit testbaar houden

 we kunnen dezelfde techniek gebruiken als daarnet voor de Cart

 een actionfilter kan de Customer als argument aanleveren aan de
Checkout Post action method…

HttpContext.User.Identity.Name

Dia 56

 TDD van Checkout HttpPost
◦ de action filter die de Customer aanlevert…

namespace Beerhall.Filters {

public class CustomerFilter : ActionFilterAttribute {

private readonly ICustomerRepository _customerRepository;

public CustomerFilter(ICustomerRepository customerRespoitory) {

_customerRepository = customerRespoitory;

}

public override void OnActionExecuting(ActionExecutingContext context) {

context.ActionArguments["customer"] = context.HttpContext.User.Identity.IsAuthenticated ?
_customerRepository.GetBy(context.HttpContext.User.Identity.Name) : null;

base.OnActionExecuting(context);

}

}

}

we hoeven enkel
OnActionExecuting te
overschrijven, bij het
beëindigen van de
action method
hoeven we met de
customer niets te
doen

public void ConfigureServices(IServiceCollection services) {

…

services.AddScoped<ICustomerRepository, CustomerRepository>();

services.AddScoped<CustomerFilter>(); niet vergeten!

Dia 57

 TDD van Checkout HttpPost
◦ de signatuur van de Checkout HttpPost action method - 1

[HttpPost, Authorize(Policy = "Customer")]

[ServiceFilter(typeof(CustomerFilter))]

public IActionResult Checkout(Customer customer,

Cart cart,

[Bind(Prefix = "ShippingViewModel")]ShippingViewModel shippingVm) {

Dia 58

Dia 59

 TDD van Checkout HttpPost
◦ de signatuur van de Checkout HttpPost action method - 2

 in de Checkout view hebben we gebruik gemaakt van een model
van het type CheckoutViewModel

 in de POST gaan we enkel de properties van ShippingViewModel
binden!

 alle form data die we willen binden heeft een key die begint met
ShippingViewModel

 we kunnen aangeven dat de MVC Model Binder de form data met
prefix ShippingViewModel moet binden aan de properties van
ShippingViewModel

[HttpPost, Authorize(Policy = "Customer")]

[ServiceFilter(typeof(CustomerFilter))]

public IActionResult Checkout(Customer customer,

Cart cart,

[Bind(Prefix = "ShippingViewModel")]ShippingViewModel shippingVm) {

Dia 60

 TDD van Checkout HttpPost – Unit testen
◦ zie CartControllerTest

◦ voorbeeld

[Fact]

public void CheckOut_ModelErrors_PassesCheckOutViewModelInViewResultModel()

{

_controller.ModelState.AddModelError("any key", "any error");

var actionResult = _controller.Checkout(_customerJan, _cart, _shippingVm) as ViewResult;

var model = actionResult.Model as CheckOutViewModel;

Assert.Equal(_shippingVm, model.ShippingViewModel);

Assert.Equal(3, model.Locations.Count());

}

commit Add unit tests for
Cart/Checkout - HttpPost

Dia 61

 TDD van Checkout HttpPost – Checkout!
◦ de implementatie

[HttpPost, Authorize(Policy = "Customer")]

[ServiceFilter(typeof(CustomerFilter))]

public IActionResult Checkout(Customer customer, Cart cart, [Bind(Prefix = "ShippingViewModel")]ShippingViewModel
shippingVm) {

if (ModelState.IsValid) {

try {

if (cart.NumberOfItems == 0)

return RedirectToAction("Index");

Location location = _locationRepository.GetBy(shippingVm.PostalCode);

customer.PlaceOrder(cart, shippingVm.DeliveryDate, shippingVm.Giftwrapping, shippingVm.Street,
location);

_customerRepository.SaveChanges();

cart.Clear();

TempData["message"] = "Thank you for your order!";

return RedirectToAction("Index", "Store");

}

catch (Exception ex) {

ModelState.AddModelError("", ex.Message);

}

}

IEnumerable<Location> locations = _locationRepository.GetAll().OrderBy(l => l.Name);

return View(new CheckOutViewModel(locations, shippingVm));

}
commit Implement Checkout -

Post

UC Checkout
Alternatief verloop

 Register
◦ we hebben reeds een Customer in de Initializer aangemaakt

◦ maar hoe kunnen nieuwe Customers zich registreren?

 we zullen het registreren van onze Customer integreren met de
registratie van de IdenityUser

 het e-mail adres van beide laten we samenvallen

 de Register functionaliteit van de Identity – Account gaan we
uitbreiden zodat

 bij registratie naast de identity gegevens ook de gegevens van de
Customer (name, firstname, address, ...) worden gevraagd

 InputModel (Register.cshtml.cs) en View (Register.cshtml) aanpassen

 bij creatie van een IdentityUser ook een Customer wordt aangemaakt
en gepersisteerd via de CustomerRepository

 OnPostAsync method (Register.cshtml.cs) aanpassen

Dia 63

 Register
◦ Account - Register - InputModel

public class InputModel {

[Required]

[EmailAddress]

[Display(Name = "Email")]

public string Email { get; set; }

…

[Required]

[StringLength(100)]

public string Name { get; set; }

[Required]

[Display(Name = "First name")]

[StringLength(100)]

public string FirstName { get; set; }

[StringLength(100)]

public string Street { get; set; }

[Display(Name = "Location")]

public string PostalCode { get; set; }

}

extra properties voor Customer
Dia 64

 Register: de view

<form asp-route-returnUrl="@ViewData["ReturnUrl"]" method="post">

<h4>Create a new account.</h4>

<hr />

<div asp-validation-summary="All" class="text-danger"></div>

<div class="form-group">

<label asp-for="Email"></label>

<input asp-for="Email" class="form-control" />

</div>

<div class="form-group">

<label asp-for="Name"></label>

<input asp-for="Name" class="form-control" />

</div>

extra inputs voor Customer

Dia 65

 Register
◦ Om de vers geregistreerde Customer te persisteren hebben

we nood aan een Add methode in ICustomerRepository

namespace Beerhall.Models.Domain {

public interface ICustomerRepository {

Customer GetBy(string email);

void Add(Customer customer);

void SaveChanges();

}

}

Dia 66

 Register
◦ Aanpassingen in Register.cshtml.cs

 DI van de repositories
public class RegisterModel : PageModel {

private readonly SignInManager<IdentityUser> _signInManager;

private readonly UserManager<IdentityUser> _userManager;

private readonly ILogger<RegisterModel> _logger;

private readonly IEmailSender _emailSender;

private readonly ICustomerRepository _customerRepository;

private readonly ILocationRepository _locationRepository;

public RegisterModel(

UserManager<IdentityUser> userManager,

SignInManager<IdentityUser> signInManager,

ILogger<RegisterModel> logger,

IEmailSender emailSender,

ICustomerRepository customerRepository,

ILocationRepository locationRepository) {

_userManager = userManager;

_signInManager = signInManager;

_logger = logger;

_emailSender = emailSender;

_customerRepository = customerRepository;

_locationRepository = locationRepository;

}

Dia 67

 Register
◦ Aanpassingen in de Register.cshtml.cs

 OnPostAsync creeërt een customer en persisteert ze via de
CustomerRepository

public async Task<IActionResult> OnPostAsync(string returnUrl = null) {

returnUrl = returnUrl ?? Url.Content("~/");

if (ModelState.IsValid) {

var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };

var result = await _userManager.CreateAsync(user, Input.Password);

if (result.Succeeded)

result = await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "customer"));

if (result.Succeeded) {

_logger.LogInformation("User created a new account with password.");

var customer = new Customer {

Email = Input.Email,

Name = Input.Name,

FirstName = Input.FirstName,

Street = Input.Street,

Location = _locationRepository.GetBy(Input.PostalCode)

};

_customerRepository.Add(customer);

_customerRepository.SaveChanges();

…

commit Add functionality for
registering Customers...Dia 68

Partial views

 Partial views zijn handig wanneer je een onderdeel van
een view wil gebruiken in verschillende views
◦ ze worden gerendered in een andere view, de parent view

◦ ze laten toe grote views op te splitsen in kleinere onderdelen
die herbruikbaar zijn

◦ ze laten toe om grote, complexe views, gestructureerd uit te
werken

 de verschillende kleinere stukken kunnen apart ontwikkeld
worden

 onafhankelijk van de parent view

 de parent view wordt overzichtelijker

 ze bevat de globale structuur met aanroepen om de partial view(s) te
renderen

Dia 70

 Een partial view is eveneens een .cshtml bestand
◦ in feite is er geen verschil tussen een partial view en een view,

beide kunnen als ViewResult van een controller action
method geretourneerd worden

 aan een partial view kan je dus ook een model doorgeven

 een partial view kan de ViewData van de parent view gebruiken

 in combinatie met Javascript kunnen controllers als antwoord op
Ajax requests partial views retourneren die via javascript op de
juiste plaats gerendered worden. Zo kunnen we specifieke
onderdelen van een pagina verversen zonder de volledige pagina
opnieuw te moeten laden.

◦ wanneer een view als een partial view gerendered wordt,
wordt de _ViewStart.cshtml niet uitgevoerd

Dia 71

 Aanroepen van een partial view uit een parent view
gebeurt via de tag helper <partial name = “…”/>
◦ het name-attribuut is verplicht en heeft aan waar de partial

view zich bevindt

Dia 72

zie https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/built-in/partial-tag-helper?view=aspnetcore-2.1 voor meer info

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/built-in/partial-tag-helper?view=aspnetcore-2.1

 Voorbeeld: we willen dat de klant straks ook de inhoud van zijn
winkelkarretje op andere plaatsen op onze site kan bekijken. Het tonen
van de CartLines van de cart splitsen we af in een partial view _CartLines

Dia 73

@model IEnumerable<Beerhall.Models.CartViewModels.IndexViewModel>

@{

ViewData["Title"] = "Cart";

}

<h2>Your shopping cart</h2>

@if (Model.Count() != 0)

{

<partial name="_CartLines" />

<div align="center" class="actionButtons">

<a asp-action="Index" asp-controller="Store" class="btn btn-default">Continue shopping

<a asp-action="CheckOut" asp-controller="Cart" class="btn btn-default">Check out

</div>

}

else

{

<h4>

You don't have any products in your shopping cart,

<a asp-controller="Store" asp-action="Index">start shopping here...

</h4>

}

de view Index.cshtml maakt nu gebruik van
de partial view _CartLines.cshtml, het model
wordt ook doorgegeven aan de partial view

 Voorbeeld vervolg: de partial view _CartLines.cshtml

Dia 74

@model IEnumerable<Beerhall.Models.CartViewModels.IndexViewModel>

<table class="table">

<thead>

<tr>

...

</tr>

</thead>

<tbody>

@foreach (var line in Model)

{

<tr>

...

</tr>

}

</tbody>

<tfoot>

<tr>

<td colspan="4" class="text-right">@($"Total: {ViewData["Total"]:N2} €")</td>

<td></td>

</tr>

</tfoot>

</table>

de partial view kan gebruik maken van de
ViewData van de parent

Caching

 Is interessant om op pagina’s te plaatsen die steeds naar de
database gaan en toch meestal dezelfde data retourneren

 voorbeeld: StoreController – Index
◦ wanneer binnen de minuut na een request voor Index weer een

request voor Index komt zal er niet naar de database gegaan worden,
maar wordt de gecachte versie van de pagina aangeleverd

Response caching adds cache-related headers to responses. These headers specify how
you want client, proxy and middleware to cache responses.

Response caching can reduce the number of requests a client or proxy makes to the web
server. Response caching can also reduce the amount of work the web server performs to
generate the response.

[ResponseCache(Duration = 60)]

public ActionResult Index() {

return View(_beerRepository.GetAll().OrderBy(b => b.Name).ToList());

}

de duration is uitgedrukt in seconden

Dia 76

 Test it yourself…
◦ Plaats een breakpoint bij de eerste lijn code in de Index

methode

◦ Run. De code uitvoering stopt bij dit breakpoint. Run verder.

◦ De store wordt getoond in de browser. Druk binnen de minuut
weer op F5. De code in de Index wordt niet meer uitgevoerd.
De gecachte pagina wordt weergegeven

Dia 77

 Enkele interessante parameters
◦ Duration: duur caching in seconden

◦ Location: bepaalt waar de gecachte gegevens mogen
bewaard worden

 enkel op de client

 op client en proxy servers

 niet

◦ VaryByHeader: als een gespecifieerd onderdeel van de header
verandert zullen de gecachte gegevens ongeldig zijn

◦ voorbeeld

[ResponseCache(Duration = 60,

Location = ResponseCacheLocation.Any,

VaryByHeader = "Accept-Language")]

voor meer info over caching zie ook https://docs.microsoft.com/en-
us/aspnet/core/performance/caching/response Dia 78

https://docs.microsoft.com/en-us/aspnet/core/performance/caching/response

