HoGent

BEDRIJF
EN
ORGANISATIE

Hoofdstuk 10: MVC Advanced

https://github.com/Weblll/10thBeerhallMvcAdv.git

HoGent

Hoofdstuk 10: MVC Advanced

» Store and Cart
» De use case Checkout

» TDD Cart — Checkout GET

o Model binding
°c Viewmodels

» TDD Cart - Checkout POST
» TDD Register

HoGent Dia 2

De Beerhall applicatie uitbreiden

®

THE

BEERHALL

The Store - Tges 58

T

The Beer Store

Bavik Pils 0,80 € Belle-Vue 1,25 €
™ Add to cart ™ Add to cart
" | Black Hole 1,68 € De Koninck 079€
™ Add to cart ™ Add to cart
Dobbel Palm 1,15 € Duvel 1,78 €
™ Add to cart ™ Add to cart
HoGent Diaz

De store

public interface IBeerRepository {

» StoreController - Index IEnumerablecBeers GetAll();

Beer GetBy(int beerId);

public class StoreController : Controller { }

private readonly IBeerRepository _beerRepository; ‘///////////////

public StoreController(IBeerRepository beerRepository) {

_beerRepository = beerRepository;

}
public ActionResult Index() {

return View(_beerRepository.GetAll().OrderBy(b => b.Name).ToList());

public class ApplicationDbContext : IdentityDbContext<ApplicationUser> {

public DbSet<Brewer> Brewers { get; set; }
public DbSet<Beer> Beers { get; set; }

we willen nu rechtstreeks met Beers
werken, niet via Brewers

HoGent Dia 5

De store

» Store — View - Index

@foreach (var beer in Model) {
<div class="col-md-6 col-xs-12">

<h3>
@beer.Name
@($"{beer.Price:N} €")
</h3>
<form asp-controller="Cart" asp-action="Add" asp-route-id="@beer.BeerId">

<div class="form-group pull-right">
>
' style="width:5em" />

<label class="sr-only" for="quantity">Quantity</lab
<input type="number" name="quantity" value="1" min="1
btn btn-default">
 Add to cart
</button>
</div>

<button type="submit" classs

</form>

wanneer we een beer met id 3 toevoegen

</div> aan de cart wordt de URL: Cart/Add/3

/

quantity is onderdeel van de form data

commit Add Store - Index

HoGent

MVC Advanced
Action filters

®

THE

BEERHALL

The Cart)
(ﬁ} p
L
g4 N
V"

HoGent

De store

» Cart - Index

Your shopping cart

Product Unit price Subtotal
5x Ename 219€ 10,95 € % Remove
24 x Jupiler 1.19€ 2856€ % Rpemove
Total: 39,51 €

Continue shopping Check out

HoGent

Dia 8

De store

» CartController - Index

public IActionResult Index() {

ViewData["To

return Vi

Cart cart = ReadCartFromSession();
1"] = cart.TotalValue;
(cart.CartLines.Select(c => new IndexViewModel(c)).ToList());

we zullen de cart niet opslaan in de
databank maar gebruik maken van een
session...

HoGent

A

via een Select vormen we de
IEnumerable<CartLine> om tot een
IEnumerable<CartLineViewModel>

public class IndexViewModel {
[HiddenInput]

public int BeerId { get;}

public int Quantity { get;}

public string Beer { get;}

public decimal Price { get;}
public decimal SubTotal { get;}

Dia 9

De store

» CartController — de cart session

o we gaan de session zo klein mogelijk houden via gepaste
annotaties in het domein

- zie Cart, CartLine, Beer

JSON Visualizer O *

Expression: HttpContext.Session.GetString(" cart")

Value:
Search P~
4 [JSON]
4 lines
4 [0]
Quantity: 1
4 Product
Beerld: 1
4 1]
Quantity: 8
4 Product
Beerld: 12

HoGent

Dia 10

De store

» CartController — de cart session

o telkens we de session lezen, halen we de producten (beers) op
via de repository

private Cart ReadCartFromSession() {
Cart cart = HttpContext.Session.GetString("cart") == null
? new Cart()
: JsonConvert.DeserializeObject<Cart>(HttpContext.Session.GetString("cart"));
foreach (var 1 in cart.CartLines)
1.Product = beerRepository.GetBy(1l.Product.Beerld);
return cart;

}

private void WriteCartToSession(Cart cart) {
HttpContext.Session.SetString("cart", JsonConvert.SerializeObject(cart));

}

HoGent Dia 11

De store

» Cart—View - Index

<tbody>
@foreach (var line in Model) {
<tr>
<td class="text-right">@($"{1line.Quantity} x")</td>
<td>@line.Beer</td>
<td class="text-right">@($"{line.Price:N2} €")</td>
<td class="text-right">@($"{line.SubTotal:N2} €")</td>
<td>
<form method="post" asp-action="Remove" asp-route-id="@line.BeerId">

<button type="submit" class="btn btn-xs"><span class="glyphicon-remove
glyphicon"> Remove</button>

</form>
</td>
</tr>

</tbody>

HoGent Dia 12

De store

» CartController Add/Remove

[HttpPost]
public ActionResult Remove(int id) {
try {
Cart cart = ReadCartFromSession();
Beer product = _beerRepository.GetBy(id);
cart.RemovelLine(product);
TempData["message"] = $"{product.Name} was removed from your cart";
WriteCartToSession(cart);
}
catch {
TempData["error"] = "Sorry, something went wrong, the product was not removed from your cart...";
}
return RedirectToAction("Index");
}
[HttpPost]
public IActionResult Add(int id, int quantity = 1) {

try {
Cart cart = ReadCartFromSession();

Beer product = _beerRepository.GetBy(id);

if (product != null) {
cart.AddLine(product, quantity);
TempData["message"] = $"{quantity} x {product.Name} was added to your cart";
WriteCartToSession(cart);

}
}
catch {

TempData["error"] = "Sorry, something went wrong, the product could not be added to your cart...";
}

return RedirectToAction("Index", "Store"); commit Add Cart - Index/Add/Remove

Focus on action filters

» De cart wordt bijgehouden in een Session.

o Dit vormt een probleem voor het unit testen
o Oplossing?
- we kunnen gebruik maken van een mocking framework om de
session te mocken, of
- we kunnen gebruik maken van de MVC pipeline om de cart als
argument aan de action method door te geven

 de action methodes die de cart nodig hebben, krijgen die nu
aangeleverd via een Cart parameter

- dit zal leiden tot duidelijke en testable code in de controller:

public IActionResult Index(Cart cart) {
ViewData["Total"] = cart.TotalVvalue;
return View(cart.CartLines.Select(c => new IndexViewModel(c)).ToList());

HoGent Dia 14

Focus on action filters

» Hoe?

Request

Other Middleware
I

Routing Middleware

Action Selection

MVC Action

Invocation Pipeline
(Filter Pipeline)

Authorization Filters

Resource Filters

Model Binding

Action Execution
Action Result Conversion

| Action Filters

Result Filters

|
|
I Exception Filters
|
|

HoGent

Result Execution

S
-~
-~
-~
-~
N
S

Action filters are ideal for any
logic that needs to see the
results of model binding, or
modify the controller or
inputs to an action method.
Additionally, action filters can
view and directly modify the
result of an action method.

Different filter types run at different points within the pipeline. Some filters, like
authorization filters, only run before the next stage in the pipeline, and take no action

the pipeline execute, as shown below.

afterward. Other filters, like action filters, can execute both before and after other parts of

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters Dia 15

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters

Focus on action filters

» Action filters

o implementeren IActionFilter of IAsyncActionFilter
o twee belangrijke methodes

\\

@

* OnActionExecuting

The onActionExecuting method runs before the action method, so it can manipulate the inputs to the
action by changing ActionExecutingContext.ActionArguments or manipulate the controller

through ActionExecutingContext.Controller. An OnActionExecuting method can short-circuit execution of
the action method and subsequent action filters by setting ActionExecutingContext.Result. Throwing an
exception in an onActionexecutingmethod will also prevent execution of the action method and
subsequent filters, but will be treated as a failure instead of successful result.

* OnActionExecuted

HoGent

The onActionExecuted method runs after the action method and can see and manipulate the results
of the action through the ActionExecutedContext.Result property. ActionExecutedContext.Canceled Will
be set to true if the action execution was short-circuited by another

filter. ActionExecutedContext.Exception will be set to a non-null value if the action or a subsequent action
filter threw an exception. Setting ActionExecutedContext.Exception to null effectively 'handles' an

exception, and ActionExectedContext.Result will then be executed as if it were returned from the action
method normally.

Dia 16

Focus on action filters

» Action filters

4 {} Microsoft.AspNetCore.Mve.Filters - @, ActionFilterAttribute()
[OnActionExecuted(Microsoft. AspMNetCore.Mve. Filters.ActionExecuted Context)
I» *z ExceptionFilterAttribute OnActionExecuting(Microsoft. AspMetCore Mvc.Filters. ActionExecuting Context)
I ¥z FilterCollection OnActionExecutionAsync(Microsoft. AspMetCore.Mvc.Filters. ActionExecuting Context)
I *z FilterScope OnResultExecuted(Microsoft. AspMNetCore My Filters ResultExecuted Context)
I ¥z ResultFilterAttribute OnResultExecuting(Microsoft.AspMetCore.Mve Filters.ResultExecuting Context)
I {} Microsoft.AspMNetCore Mvec.Formatters OnResultExecutionAsync(Microsoft.AspMetCore.Mve Filters. ResultExecutingContext,
I {} Microsoft.AspNetCore Mve.Formatters.Inter & Order

public class CartSessionFilter : ActionFilterAttribute {

private Cart _cart;

public override void OnActionExecuting(ActionExecutingContext context) {

_cart = ReadCartFromSession(context.HttpContext); €«——— | gethtEContfxthI;degdee/ van de
ctioncxecutingLontex

context.ActionArguments["cart"] = _cart; |
base.OnActionExecuting(context); .
8()3 \ De Cart parameter van de action method

} krijgt dit argument aangereikt!

public override void OnActionExecuted(ActionExecutedContext context) {
WriteCartToSession(_cart, context.HttpContext);
base.OnActionExecuted(context);

HoGent Dia 17

Focus on action filters

» Action filters

o we moeten de filter registreren als een service in de
RegisterServices methode van StartUp.cs...

services.AddScoped<CartSessionFilter>();

> merk op dat je in de constructor van CartSessionFilter gebruik
kunt maken van DI

- we maken hier gebruik van om de BeerRepository te injecteren...

public class CartSessionFilter : ActionFilterAttribute {
private readonly IBeerRepository _beerRepository;
private Cart _cart;

public CartSessionFilter(IBeerRepository beerRepository) {
_beerRepository = beerRepository;

}

private Cart ReadCartFromSession(HttpContext context) {
Cart cart = context.Session.GetString("cart") == null ?

new Cart() : JsonConvert.DeserializeObject<Cart>(context.Session.GetString("cart"));
foreach (var 1 in cart.CartLines)

- > 1.Product = _beerRepository.GetBy(l.Product.BeerlId);

HoGent)

return cart;

Focus on action filters

» we kunnen nu de nodige action methods decoreren
met het ServiceFilter attribuut

o ipv alle action methods te decoreren kunnen we het attribuut
boven de klasse plaatsen...

[ServiceFilter(typeof(CartSessionFilter))]
public class CartController : Controller {

o het resultaat zijn unit testable action methods, voorbeeld Add

[HttpPost]
public IActionResult Add(Cart cart, int id, int quantity = 1) {
try {
Beer product = _beerRepository.GetBy(id);
if (product != null) {
cart.AddLine(product, quantity);
TempData["message"] = $"{quantity} x {product.Name} was added to your cart";
}
}
catch {
TempData["error"] = "Sorry, something went wrong, the product could not be added to your cart...";
}

return RedirectToAction("Index", "Store");

De store

» CartController — de unit testen
o voorbeeld

[Fact]
public void Add_RedirectsToActionIndexInStore() {
var actionResult = _controller.Add(_cart, 1) as RedirectToActionResult;
Assert.Equal("Index", actionResult?.ActionName);
Assert.Equal("Store", actionResult?.ControllerName); }
[Fact]

public void Add_AddsProductToCart() {
_beerRepository.Setup(b => b.GetBy(1)).Returns(_context.BavikPils);
_controller.Add(_cart, 1, 4);
Assert.Equal(2, _cart.NumberOfItems);

HoGent oz commit Refactor CartController ...

MVC advanced

®

THE

BEERHALL

UC Checkout

‘\ .\ ‘\ ‘\
R: € R (€

HoGent

MVC in depth

» Check out Use case — Normaal verloop

1.

AN

© 00 N

Actor kiest om naar de kassa te gaan
Het systeem valideert

Systeem vraagt actor om in te loggen
Actor heeft username en wachtwoord in
Systeem valideert

Systeem vraagt klant de leveringsdetails in te geven
(leveringsadres, leveringsdatum (indien gewenst, minstens 3
dagen en niet op zondag), al dan niet kadoverpakking)

Klant vult gegevens in
Systeem valideert
Systeem registreert winkelmandje als order in de database

10 Systeem ledigt winkelmandje
11. Systeem bevestigt order Alternatief -

Actor moet zich eerst registreren

HoGent Dia 22

MVC in depth

» Controllers (routing)

Logon(username, waditwoord) Worden telkens 2 methodes
in de Controller :
€ e - GET (tonen van formulier)
- POST (Posten van formulier
Checkout{leveringsadres, verpakking, leveringsdatum) d ata)

bevestiging

HoGent Dia 23

MVC in depth

» Stappenplan uitwerken van de UC
1. Ontwerp van de Ul
Ontwerp van domein en controllers
Domein aanpassen waar nodig — TDD [commit]
DbSet aggregate root/mapping/migratie/initializer [commit]
Extra repositories, helpers, ... [commit]
Controller — TDD & View [commit]

o Uk wh

HoGent Dia 24

UC Checkout

Stappenplan uitwerken van de UC

1. Ontwerp van de Ul

Ontwerp van domein en controllers

Domein aanpassen waar nodig — TDD [commit]

Extra repositories, helpers, ... [commit]

2
3
4. DbSet aggregate root/mapping/migratie/initializer [commit]
5
6

Controller - TDD & View [commit]

HoGent

UC Checkout - Ontwerp Ul

Beerhall

@ @ JCart/Checkout

Checkout

Delivery address

P~ 0O x A

Street ‘text \
Location ‘ locations ‘
Options
Delivery date [[&]
Gift wrapping «
[Order J [Cancel J

footer

HoGent

—-ax

Email [iex

Password #ree

v Remember me

Login

Register as new user?

footer

UC Checkout

Stappenplan uitwerken van de UC

1. Ontwerp van de Ul

2. Ontwerp van domein en controllers

Domein aanpassen waar nodig — TDD [commit]

3
4. DbSet aggregate root/mapping/migratie/initializer [commit]
5

Extra repositories, helpers, ... [commit]
6. Controller - TDD & View [commit]

HoGent

UC Checkout - Ontwerp domain

T A ((Order
Class Class
= Properties = Fields
& Customerld | get; set: }: int 95 _deliveryDate : DateTime?
4 E.mail { get; set; }: string . F Orders :.. 99 _location :-L-:-cation
& FirstName | get; set: } : string 95 _street : string
& Location { get; set; } : Location = Properties
& Name| get; set }: str.mg F DeliveryDate { get; set; } : DateTime?
& Street get; set; }: string ~ Giftwrapping { get; set; } : bool
= Methods & Location { get; set; } : Location
@ Customer() & OrderDate { get; set }: DateTime
@ PlaceOrder(Cart cart, DateTime? deliv... & Orderld { get; set: } 1 int
E & Street | get: set: | : string
& Total { get; }: decimal
(ApplicationUser A = Metheds
Clasz . @ Order()
= © Ordar(Cart cart, DateTime? deliveryD..
LY
| ICustomerRepository A
Interface
=l Methods

B GetByfstring email) » Customsr
@ SaveChanges) : void

HoGent

B Orderlines :...

rl'.:artLine F Product IJBeer

Class = Olasc
l\

= Properties

F Quantity { get; set; } : int
& Total { get; sety | : decimal

(OrderLine A
Clazz
=¥ CartLine

== E Properties

& Orderld { get; set; }iint

& Price | get; set; }: decimal

& Productld | get:set: }rint
. v,

Dia 28

UC Checkout - Ontwerp Controllers

-

fr
CartController A
Class
= Controller
= Methods
@ Add(Cart cart, int id, [int quantity = 1]} : IActionResult
@ Checkout(Cart cart) : lActionResult
@ Checkout(Customer customer, Cart cart, ShippingViewModel shipping¥m) : |ActionResult
@ Index(Cart cart) : lActionResult
@ Remove(Cart cart, int id) : lActionResult
L v,
I/- T
AccountController A
Class
=+ Controller
= Methods
@ Login([string returnUrl = null]} : lActionResult
@ Login{LoginViewl odel model, [string returnUrl = null]) : Task<IActionResult >
@ LogOff) : Task<|ActionResult>
@ Register([string returnUrl = null]) : lActionResult
) Register(RegisterViewModel model, [string returnUrl = null]} : Task<lActionResult >

HoGent Dia 29

UC Checkout

Stappenplan uitwerken van de UC
1. Ontwerp van de Ul
2. Ontwerp van domein en controllers

3. Domein aanpassen waar nodig — TDD [commit]

DbSet aggregate root/mapping/migratie/initilializer [commit]

4
5

. Extra repositories, helpers, ... [commit]
6. Controller - TDD & View [commit]

HoGent

UC Checkout - Domain

» TDD van Checkout - Domain
o Nieuwe klassen Customer, ICustomerRepository, Order en
Orderline
o Bekijk de unit testen
o Qefening:
° » schrijf unit testen voor Customer

WE ARE
AMAZING

STILL HAVE
WORK TO DO!

HoGent @ commit Add Domain classes...

UC Checkout - Domain

» Tip

° Om te zien wat er in deze commit is aangepast/toegevoegd :
- Klik onderaan footer bar op master > View History

D¢ History - master - Microseft Visual Studio
File Edit View Project Debug Team Tools
-0 |B-LWH|2-C-

| [c]

= %

Graph Author
4 Local History

Stefaan Samyn
Stefsan Samyn
Stefaan Samyn
Stefaan Samyn
Stefaan Samyn
Stefaan Samyn
Stefaan Samyn
Stefaan Samyn
Stefsan Samyn
Stefaan Samyn
Stefaan Samyn
Stefaan Samyn
Stefaan Samyn

Show output from: Source Control - Git

C:\temp\2A1\SportsStoreHoofdstukd0efeningd
Opening repositories:

Architecture Test

/2016 2:22:00
1272016 2:12:08
12/2016 2:07:
12/2016

/2016

016 1:
12/2016

/2016
1272016
12/2016 1:21:
12/2016 1:13;

/2016 11:40:34
/2016 11:33:00

C:\Users\ksa6@7\Source\Repos\BeerhalIMVC_Advanced

HoGent

ReSharper Analyze Window Help
P Attach.. - & | 5 | 'm -

Message

Add functionality for registering Customers
Implement Checkout - Post

Add unit tests for Checkout - Post

Add the Checkout farm

Implement Checkout - Get

Add unit tests for Checkout - Get and add CheckoutViM

Adjust Data layer

Add Domain classes and unit tests

Refacter CartController with actienfilter for sessien and add unit tests
Add Cart - Index/Add/Remove

Add Store - Index

Add project files from chapter 09

Add .gitignore and .gitattributes,

YH & |QuickLounch (Cirl+Q)

Filter History

%' New Branch...
Manage Branches

D View History...

master

€ BeerhallMVC_Advanced

. b

dx

® N

Pl - =

Sign in

master

&' master «

Dia 32

UC Checkout - Domain

» Tip

* Rechtsklik de commit “Add domein classes and unit tests” > View
commit details. Dit toont alle gewijzigde, toegevoegde bestanden.

HoGent

ITearn Explorer - Commit Details * 3 X

<SRN BN P

Commit Details | BeerhallMVC_Advanced ~ |j|

Commit 848c563d

Stefaan Samyn «<stefaan.samyn@hogent.bex>
T12/2016 1:38:37

Parent: dad8lebed

Add Domain classes and unit tests
Revert| Reset » | Create Tag = | Actions -
4 Changes (5)
F grcBeerhall\Models\Domain
C* Custormer.cs [add]
C* |CustomerRepository.cs [add]
C* Order.cs [add]
C* OrderLine.cs [add]

a test' Beerhall Testsh Models\Domain
C* OrderTest.cs [add]

Klikken op een file toont de
code igv [add]. Igv [update]
kan je ook de wijzigingen

zien tov de vorige commits.

Dia 33

UC Checkout

Stappenplan uitwerken van de UC

1
2
3
4.
5
6

Ontwerp van de Ul
Ontwerp van domein en controllers

Domein aanpassen waar nodig — TDD [commit]

Extra repositories, helpers, ... [commit]

Controller - TDD & View [commit]

HoGent

UC Checkout - Data

» TDD van Checkout - Data
o OrderConfiguration, OrderLineConfiguration en
CustomerConfiguration werden toegevoegd

o |In ApplicationDbContext wordt gezorgd dat deze
configurations toegepast worden.

o herhaal, bekijk en begrijp voor bv. CustomerConfiguration
- Name, Firstname, Email zijn verplicht en maximaal 100 karakters

* Customer - Location is optioneel, wanneer een location wordt
verwijderd, wordt de location voor de desbetreffende customers
null

* Customer — Order, een order moet verplicht tot een customer
behoren, wanneer een customer wordt verwijderd, worden
automatisch al zijn orders verwijderd

HoGent Dia 35

UC Checkout - Data

» TDD van Checkout - Data
o Er werd een DbSet voor onze aggregate root Customer
toegevoegd aan de Context
o De CustomerRepository : ICustomerRepository werd
geimplementeerd

HoGent Dia 36

MVC in depth — Auth

» TDD van Checkout - Data
o |nitializer: toevoegen van een Customer

eMailAddress = "jan@hogent.be";

user = new ApplicationUser { UserName = eMailAddress, Email = eMailAddress };
await _userManager.CreateAsync(user, "P@sswordl");

await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "customer"));

var customer = new Customer {
Email = eMailAddress,

FirstName = "Jan",
Name = "De man",
Location = _dbContext.Locations.SingleOrDefault(l => 1.PostalCode == "9700"),

Street = "Nederstraat 5"

%

_dbContext.Customers.Add(customer);
_dbContext.SaveChanges();

HOGent e» commit Adjust the data layer

UC Checkout

Stappenplan uitwerken van de UC
Ontwerp van de Ul
Ontwerp van domein en controllers

Domein aanpassen waar nodig — TDD [commit]

2
3
4. DbSet aggregate root/mapping/migratie/initializer [commit]
5

Extra repositories, helpers, ... [commit]

6. Controller — TDD & View [commit]

HoGent

Checkout - GET

‘\ ‘\ '\ ‘\
R: € R R

HoGent

MVC in depth — ViewModel

» TDD van Checkout HttpGet - ViewModels

o Er moet een formulier gepresenteerd worden waarop de

gebruiker de checkout details kan ingeven

* street

* location (dropdown list)

- gift wrapping
- date of delivery

Checkout

Delivery address

rrrrr

o Checkout is enkel toegankelijk voor geauthenticeerde
gebruikers die tot de rol customer behoren

HoGent

Dia 40

MVC in depth — ViewModels

» TDD van Checkout HttpGet - ViewModels
> We maken gebruik van een CheckoutViewModel

> Het viewmodel bevat de properties voor street, postal code
(~location), gift wrapping en date of delivery én deze keer
geven we ook de SelectList met locations door via dit
viewmodel.

HoGent Dia 41

MVC in depth — ViewModels

» TDD van Checkout HttpGet - ViewModels
° We maken gebruik van een CheckoutViewModel

namespace Beerhall.Models.ViewModels.CartViewModels {
public class CheckOutViewModel {

public
public
public
public
public

public

DateTime? DeliveryDate { get; set; }
string ShippingStreet { get; set; }
string ShippingPostalCode { get; set; }
bool Giftwrapping { get; set; }
SelectlList Locations { get; }

_

De SelectList als onderdeel van het
ViewModel

CheckOutViewModel (IEnumerable<Location> locations, DateTime? deliveryDate = null,

bool giftWrapping = false, string shippingStreet=null, string shippingPostalCode = null) {

Locations = new SelectlList(locations,

nameof(Location.PostalCode),
nameof(Location.Name),
shippingPostalCode);

DeliveryDate = deliveryDate;

Giftwrapping = giftWrapping;

ShippingStreet = shippingStreet;

ShippingPostalCode = ShippingPostalCode;

Optionele parameters: krijgen de
opgegeven waarde indien er voor de
parameter geen argument wordt voorzien

AOGEnNl

Dia 42

MVC in depth — ViewModels

» TDD van Checkout HttpGet - ViewModels

> We maken gebruik van een CheckoutViewModel

* HttpGet ©
* dit VM bevat alles dat moet aangereikt worden aan de view
* we hoeven geen extra data via de ViewData door te geven

* HttpPost ®
* dit VM bevat te veel
- de selectlist met Locations heeft read-only purpose

- we willen er voor zorgen dat de MVC model binder enkel de inputs
van het formulier bindt

HoGent Dia 43

MVC in depth — ViewModels

» TDD van Checkout HttpGet - ViewModels
° We maken gebruik van een CheckoutViewModel

We kunnen.de onderdelen c{ie we via de
namespace Beerhall.Models.ViewModels.CartViewModels { HttpPost willen ontvangen in een apart

. . ViewModel opnemen
public class CheckOutViewModel {

public SelectList Locations { get; }
public ShippingViewModel ShippingViewModel { get; set; }
public CheckOutViewModel (IEnumerable<Location> locations, ShippingViewModel shippingViewModel) {
Locations = new SelectList(locations,
nameof(Location.PostalCode),
nameof(Location.Name),
shippingViewModel?.PostalCode);
ShippingViewModel = shippingViewModel;

}
public class ShippingViewModel {

public DateTime? DeliveryDate { get; set; }

public bool Giftwrapping { get; set; }
Dit willen we via de HttpPost form data

public string Street { get; set; } binnenkrijgen

A

public string PostalCode { get; set; }

HoGent Oia a4

MVC in depth — ViewModels

» TDD van Checkout HttpGet — Unit testen method
Checkout
° De testen

[Fact]
public void Checkout_EmptyCart_RedirectsToIndexOfStore()
{
var actionResult = _controller.Checkout(new Cart()) as RedirectToActionResult;
Assert.Equal("Index", actionResult?.ActionName);
Assert.Equal("Store", actionResult?.ControllerName);
}
[Fact]
public void Checkout_NonEmptyCart_PassesACheckOutViewModelInViewResultModel ()
{
var actionResult = _controller.Checkout(_cart) as ViewResult;
var model = actionResult?.Model as CheckOutViewModel;
Assert.Null(model.ShippingViewModel.DeliveryDate);
Assert.Null(model.ShippingViewModel.PostalCode);
Assert.Null(model.ShippingViewModel.Street); 4 CartControllerTest (9)
Assert.False(model.ShippingViewModel.Giftwrapping); €23 Beerhall Tests.Controllers.CartControllerTest. Checkout_Em ptyCart RedirectsTolndexOfStore
Assert.Equal(3, model.Locations.Count()); €3 Beerhall.Tests.Controllers.CartControllerTest. Checkout_N onEmptyCart_PassesACheckOutViewMaodell.
} 0 Beerhall Tests.Controllers.CartControllerTest.Add_AddsProductToCart

0 Beerhall. Tests.Controllers.CartControllerTest. Add_RedirectsToActionlndexInStore

0 Beerhall. Tests.Controllers.CartControllerTest Index_EmptyCart_PassesCartToDefaultView

0 Beerhall. Tests.Controllers.CartControllerTestIndex_MNonEmptyCart_PassesCartToDefaultView

(/] Beerhall Tests.Controllers.CartControllerTest.Index_MNonEmptyCart_StoresTotallnViewData

0 Eeerhall. Tests. Controllers.CartControllerTest. Remove_RedirectsToActionindexinDefaultController
O Beerhall Tests.Contrallers.CartControllerTest. Remove_RemovesProductFromCart

commit Add unit tests for

Cart/Checkout - HttpGet

MVC in depth — ViewModels

» TDD van Checkout HttpGet — Implementatie Checkout

public IActionResult Checkout(Cart cart) {
if (cart.NumberOfItems == 0)
return RedirectToAction("Index", "Store");
IEnumerable<Location> locations = _locationRepository.GetAll().OrderBy(l => 1.Name).ToList();
return View(new CheckOutViewModel(locations, new ShippingViewModel()));

4 CartControllerTest (9
'ﬂ Beerhall. Tests.Controllers.CartControllerTest.Add_AddsProductToCart
0 Beerhall. Tests.Controllers.CartControllerTest.Add_Redirects ToActionIndexInStore
'ﬂ Beerhall. Tests.Controllers.CartControllerTest Checkout_EmptyCart_RedirectsTolndexOfStore
ﬁ' Beerhall.Tests.Controllers.CartControllerTest. Checkout_MonEmptyCart_PassesACheckOutViewModd
'ﬂ Beerhall. Tests.Controllers.CartControllerTest Index_EmptyCart_PassesCartToDefaultView
0 Beerhall.Tests.Controllers.CartControllerTest.Index_MonEmptyCart_PassesCartToDefaultView
'ﬂ Beerhall. Tests.Controllers.CartControllerTest Index_MonEmptyCart_StoresTotallnViewData
0 Beerhall. Tests.Controllers.CartControllerTest. Remove_RedirectsToActionindexInDefaultController
ﬂ BEeerhall. Tests.Controllers.CartControllerTest. Remove_RemovesProductFromCart

commit Implement

HoGent = Cart/Checkout - HttpGet

MVC in depth — View

» TDD van Checkout HttpGet — Display & Validatie

o Voeg display en validatie annotaties toe aan het
B ShippingViewModel

AMAZING
STILL HAVE

WORK TO DO!

Checkout

Delivery address

Street
Location -- select location --
Options
Delivery date dd/mmfjjjj
Gift wrapping

HoGent Dia 47

MVC in depth — View

» TDD van Checkout HttpGet — View

o Maak gebruik van scaffolding voor de Checkout view aan te

maken bij het toevoegen van de view

HoGent

Data context class:

Options:

[] Create as a partial view

Reference script libraries

Uze a layout page:
~Views/Shared/_Layout.cshtml

(Leave emnpty if it is set in a Razor _viewstary/file)

Aeld View

View name: Checkout

Template: Create

Model class: ShippingViewhModel (Beerhall. Models.ViewMoeodels. CartViewhModels)

Add

Cancel

Kies ShippingViewModel, indien je
CheckoutViewModel kiest heb je weinig aan
de scaffolding...

Dia 48

MVC in depth — View

» TDD van Checkout HttpGet — View
o Maak gebruik van scaffolding voor de Checkout view aan te

maken (right-mouse-click op folder Cart, kies MVC View)

Dit resultaat van de scaffolding kunnen we
nu naar onze wensen aanpassen...

HoGent

Checkout

ShippingViewModel

DeliveryDate

/ Street

PostalCode

Back to List

Giftwrapping

Create

Dia 49

MVC in depth — View

» TDD van Checkout HttpGet — View
o Aanpassen van de scaffolded view

@model Beerhall.Models.CartViewModels.ShippingViewModel ‘“—-———-—._._____________

Dit moeten we wijzigen in CheckoutViewModel

@{
ViewData["Title"] = “Checkout";

<h2>Checkout</h2>

De default method is HttpPost ©

<h4>ShippingViewModel</h4>
<hr />

<div class="row"> Alle deze properties moeten we nu laten

<div class="col-md-4"> voorafgaan door @Model.ShippingViewModel.,
<form asp-action="ViewMe"> een slimme find/replace doet dit in 1 keer voor
ons...

<div asp-validation-summary="ModelOnly" cl xt-danger"></div>

<div class="form-group">
<label asp-for="DeliveryDate" class="control-label"></label>
<input asp-for="DeliveryDate" class="form-control"” />

</div>

<div class="form-group">
<div class="checkbox">
<label>

<input asp-for="Giftwrapping" /> @Html.DisplayNameFor(model => model.Giftwrapping)
</label>

loGent «av

. Dia 50
</div>

MVC in depth — View

» TDD van Checkout HttpGet — View
o Aanpassen van de scaffolded view

<div class="form-group">
<label asp-for="PostalCode" class="control-label"></label>
<input asp-for="PostalCode" class="form-control” />

<span asp-validation-for="PostalCode" class="text—dan;m Hier voegen we onze dropdownlist in
</div>

<div class="form-group">
<input type="submit" value="Create" class="btn btn-default" />

</div>
</form>
</div>
</div>
<div>

<a asp-action="Index">Back to List
</div>

@section Scripts {
@{await Html.RenderPartialAsync("_ValidationScriptsPartial");}
} o

op een asynchrone manier worden de jQuery validation libraries
scripts aangeleverd voor _Layout.

_ValidationScriptsPartial is een partial view, die je in de folder .
HO Gent Views/Shared vindt. We behandelen partial views nog verderop... o» commit Add the Checkout form

MVC in depth — View

» TDD van Checkout HttpGet — View

° Run de applicatie

- gain de Browser naar “bron weergeven”

* name attributen beginnen nu allemaal met ShippingViewModel. Bvb
ShippingViewModel.Street; De Id’s met ShippingViewModel

|<ir':uLt class="form-control” type="text" id="ShippingViewModel_Strest” name="ShippingViewModel.5treet” wvalus="" >|

- vul het formulier in, ga naar developer tools > Netwerk, klik op
submit

¥ Form Data View source view URL encoded :

ShippingViewModel.5treet: Hoogstraat 3
ShippingViewModel.PostalCode: s7e@
ShippingViewModel.DeliveryDate: 2616-12-38
ShippingViewModel.Giftwrapping: true

HoGent Dia 52

MVC in depth — Auth

» TDD van Checkout HttpGet — Auth

o enkel de ingelogde users die customer zijn kunnen van de
checkout gebruik maken

- we kunnen gebruik maken van de policy die we in hoofdstuk 9
hebben gemaakt

[Authorize(Policy = "Customer")]
public IActionResult Checkout(Cart cart) { ..

* indien er geen user is ingelogd gaat de Identity middleware
ervoor zorgen dat we automatisch omgeleid worden naar de inlog
pagina

* in de initializer hebben we reeds een IdenityUser aangemaakt die
customer is (via claim), als deze inlogt kom je terug bij de
checkout... [ewailadaress = "janghogent.ve';

user = new ApplicationUser { UserName = eMailAddress, Email = eMailAddress };

await _userManager.CreateAsync(user, "P@sswordl");

await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "customer"));

HoGent Dia 53

MVC in depth — Auth

» TDD van Checkout HttpGet — Auth

Checkout

Delivery address

Street
Location - select location -
Options
Delivery date dd/mmyjjjj

Gift wrapping

@ 2016 - Beerhall

o wanneer het order wordt geplaatst zal onze Customer zijn
verantwoordelijkheid nemen en een order creéren en deze
toevoegen aan zijn lijst van orders...

HoGent Dia 54

Checkout - POST

‘\ ‘\ '\ ‘\
R: R R (€

HoGent

TDD CheckOut - Post

» TDD van Checkout HttpPost

> |n de Checkout Post zal de Customer moeten beschikbaar zijn
- verantwoordelijk voor het aanmaken van het nieuwe Order
* persisteren van zijn Order

- via de HttpContext kunnen we aan de ingelogde ApplicationUser,
en via het email adres kunnen we de Customer ophalen uit de
repository

HttpContext.User.Identity.Name

« 00k nu willen we dit niet in de CartController doen want we willen
deze unit testbaar houden

- we kunnen dezelfde techniek gebruiken als daarnet voor de Cart

- een actionfilter kan de Customer als argument aanleveren aan de
Checkout Post action method...

HoGent Dia 56

TDD CheckOut - Post

» TDD van Checkout HttpPost
o de action filter die de Customer aanlevert...

namespace Beerhall.Filters {

public class CustomerFilter : ActionFilterAttribute {
private readonly ICustomerRepository _customerRepository;

public CustomerFilter(ICustomerRepository customerRespoitory) {
_customerRepository = customerRespoitory;

we hoeven enkel
OnActionExecuting te

public override void OnActionExecuting(ActionExecutingContext context) { overschrijven, bij het

context.ActionArguments["customer”] = context.HttpContext.User.Identity.IsAuthenticated ? beéindigen van de
_customerRepository.GetBy(context.HttpContext.User.Identity.Name) : null; action method
base.OnActionExecuting(context); hoeven we met de
} customer niets te
doen

public void ConfigureServices(IServiceCollection services) {

services.AddScoped<ICustomerRepository, CustomerRepository>();

niet vergeten!

services.AddScoped<CustomerFilter>();

HoGent Dia 57

TDD CheckOut - Post

» TDD van Checkout HttpPost
o de signatuur van de Checkout HttpPost action method - 1

[HttpPost, Authorize(Policy = "Customer")]

[ServiceFilter(typeof(CustomerFilter))]

public IActionResult Checkout(Customer customer,
Cart cart,

Ui (Eef = S ShilppingVienode 1) Jshi ppingvieniodel shippingim) {

HoGent Dia 58

TDD CheckOut - Post

» TDD van Checkout HttpPost

o de signatuur van de Checkout HttpPost action method - 2

* in de Checkout view hebben we gebruik gemaakt van een model
van het type CheckoutViewModel
* in de POST gaan we enkel de properties van ShippingViewModel
binden!
- alle form data die we willen binden heeft een key die begint met
ShippingViewModel

- we kunnen aangeven dat de MVC Model Binder de form data met
prefix ShippingViewModel moet binden aan de properties van
ShippingViewModel

¥ Form Data view source view URL encoded
ShippingViewModel.Street: Hoogstraat 3
ShippingViewModel.PostalCode: 9786

. . " " ShippingViewModel.DeliveryDate: 2816-12-38
[HttpPost, Authorize(Policy = "Customer")] ShippingViewModel.Giftwrapping: true

[ServiceFilter(typeof(CustomerFilter))]
public IActionResult Checkout(Customer customer,
Cart cart,

[Bind(Prefix = "ShippingViewModel")]ShippingViewModel shippingVm) {

TDD CheckOut - Post

» TDD van Checkout HttpPost — Unit testen
o zie CartControllerTest

o voorbeeld

[Fact]

public void CheckOut_ModelErrors_ PassesCheckOutViewModelInViewResultModel()

{
_controller.ModelState.AddModelError("any key", "any error");
var actionResult = _controller.Checkout(_customerJan, _cart, _shippingVm) as ViewResult;
var model = actionResult.Model as CheckOutViewModel;
Assert.Equal(_shippingVm, model.ShippingViewModel);
Assert.Equal(3, model.Locations.Count());

}

HoGent

commit Add unit tests for

Cart/Checkout - HttpPost

TDD CheckOut - Post

» TDD van Checkout HttpPost — Checkout!
o de implementatie

[HttpPost, Authorize(Policy = "Customer")]
[ServiceFilter(typeof(CustomerFilter))]

public TActionResult Checkout(Customer customer, Cart cart, [Bind(Prefix = "ShippingViewModel")]ShippingViewModel
shippingVm) {

if (ModelState.IsValid) {
try {
if (cart.NumberOfItems == 0)
return RedirectToAction("Index");
Location location = _locationRepository.GetBy(shippingVm.PostalCode);

) customer.PlaceOrder(cart, shippingVm.DeliveryDate, shippingVm.Giftwrapping, shippingVm.Street,
location);

_customerRepository.SaveChanges();
cart.Clear();
TempData["message"] = "Thank you for your order!";
return RedirectToAction("Index", "Store");
}
catch (Exception ex) {
ModelState.AddModelError("", ex.Message);

}
IEnumerable<Location> locations = _locationRepository.GetAll().OrderBy(l => 1.Name);
return View(new CheckOutViewModel(locations, shippingVm));

commit Implement Checkout -

} ’ ” Post

MVC advanced

®

THE

BEERHALL

UC Checkout
Alternatief verloop

HoGent

MVC advanced — Auth

» Register

o we hebben reeds een Customer in de Initializer aangemaakt
o maar hoe kunnen nieuwe Customers zich registreren?

- we zullen het registreren van onze Customer integreren met de
registratie van de IdenityUser

* het e-mail adres van beide laten we samenvallen

- de Register functionaliteit van de Identity — Account gaan we
uitbreiden zodat

* bij registratie naast de identity gegevens ook de gegevens van de
Customer (name, firstname, address, ...) worden gevraagd
* InputModel (Register.cshtml.cs) en View (Register.cshtml) aanpassen

* bij creatie van een IdentityUser ook een Customer wordt aangemaakt
en gepersisteerd via de CustomerRepository

* OnPostAsync method (Register.cshtml.cs) aanpassen

HoGent

Dia 63

MVC advanced — Auth

» Register

Register
o Account - Register - InputModel Create a new account
public class InputModel { Emai

[Required]
[EmailAddress] Name
[Display(Name = "Email")]
public string Email { get; set; } First name
[Required]

Street
[StringlLength(100)]
public string Name { get; set; }
[Required] Location
[Display(Name = "First name")] - selectfoeaton =
[StringLength(100)] Password
public string FirstName { get; set; }
[Str‘ingLength(lOO)] Confirm password

public string Street { get; set; }
[Display(Name = "Location")]
public string PostalCode { get; set; }

HoGent

Register

© 2018 - Beerhall

extra properties voor Customer

Dia 64

MVC advanced — Auth

» Register: de view

<form asp-route-returnUrl="@viewData["ReturnUrl”]" method="post">

<h4>Create a new account.</h4>
<hr />
<div asp-validation-summary="All" class="text-danger"></div>
<div class="form-group">

<label asp-for="Email"></label>

<input asp-for="Email" class="form-control"” />

</div>
<div class="form-group">

<label asp-for="Name"></label>

<input asp-for="Name" class="form-control"” />

</div>

HoGent

extra inputs voor Customer

Dia 65

MVC advanced — Auth

» Register

° Om de vers geregistreerde Customer te persisteren hebben
we nood aan een Add methode in ICustomerRepository

namespace Beerhall.Models.Domain {
public interface ICustomerRepository {
Customer GetBy(string email);
void Add(Customer customer);

void SaveChanges();

HoGent Dia 66

MVC advanced — Auth

» Register

o Aanpassingen in Register.cshtml.cs
Dl van de repositories

public class RegisterModel : PageModel {

HoGent

private
private
private
private
private

private

readonly
readonly
readonly
readonly
readonly
readonly

SignInManager<IdentityUser> _signInManager;
UserManager<IdentityUser> _userManager;
ILogger<RegisterModel> _logger;
IEmailSender _emailSender;
ICustomerRepository _customerRepository;
ILocationRepository _locationRepository;

public RegisterModel(

UserManager<IdentityUser> userManager,

SignInManager<IdentityUser> signInManager,

ILogger<RegisterModel> logger,

IEmailSender emailSender,

ICustomerRepository customerRepository,

ILocationRepository locationRepository) {

_userManager

= userManager;

_signInManager = signInManager;

_logger = logger;

_emailSender

= emailSender;

_customerRepository = customerRepository;

_locationRepository = locationRepository;

Dia 67

MVC advanced — Auth

» Register

o Aanpassingen in de Register.cshtml.cs

- OnPostAsync creeért een customer en persisteert ze via de
CustomerRepository

public async Task<IActionResult> OnPostAsync(string returnUrl = null) {
returnUrl = returnUrl ?? Url.Content("~/");
if (ModelState.IsValid) {
var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };
var result = await _userManager.CreateAsync(user, Input.Password);
if (result.Succeeded)
result = await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "customer"));
if (result.Succeeded) {
_logger.LogInformation("User created a new account with password.");

var customer = new Customer {

Email = Input.Email,

Name = Input.Name,

FirstName = Input.FirstName,

Street = Input.Street,

Location = _locationRepository.GetBy(Input.PostalCode)
}s

_customerRepository.Add(customer);

_customerRepository.SaveChanges();

commit Add functionality for

HOGent = registering Customers...

THE

BEERHALL

Partial views

MVC advanced — Partial Views

» Partial views zijn handig wanneer je een onderdeel van
een view wil gebruiken in verschillende views
o ze worden gerendered in een andere view, de parent view
o ze |laten toe grote views op te splitsen in kleinere onderdelen
die herbruikbaar zijn
o ze laten toe om grote, complexe views, gestructureerd uit te
werken

- de verschillende kleinere stukken kunnen apart ontwikkeld
worden
- onafhankelijk van de parent view
- de parent view wordt overzichtelijker

* ze bevat de globale structuur met aanroepen om de partial view(s) te
renderen

HoGent Dia 70

MVC advanced — Partial Views

» Een partial view is eveneens een .cshtml bestand

o in feite is er geen verschil tussen een partial view en een view,
beide kunnen als ViewResult van een controller action
method geretourneerd worden
* aan een partial view kan je dus ook een model doorgeven
- een partial view kan de ViewData van de parent view gebruiken

* in combinatie met Javascript kunnen controllers als antwoord op
Ajax requests partial views retourneren die via javascript op de
juiste plaats gerendered worden. Zo kunnen we specifieke
onderdelen van een pagina verversen zonder de volledige pagina
opnieuw te moeten laden.

° wanneer een view als een partial view gerendered wordt,
wordt de _ViewStart.cshtml niet uitgevoerd

HoGent Dia 71

MVC advanced — Partial Views

» Aanroepen van een partial view uit een parent view
gebeurt via de tag helper <partial name = “...” />

o het name-attribuut is verplicht en heeft aan waar de partial
view zich bevindt

zie https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/built-in/partial-tag-helper?view=aspnetcore-2.1 voor meer info

HoGent Dia 72

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/built-in/partial-tag-helper?view=aspnetcore-2.1

MVC advanced — Partial Views

» Voorbeeld: we willen dat de klant straks ook de inhoud van zijn
winkelkarretje op andere plaatsen op onze site kan bekijken. Het tonen
van de CartlLines van de cart splitsen we af in een partial view _CartLines

@model IEnumerable<Beerhall.Models.CartViewModels.IndexViewModel>

@{
ViewData["Title"] = "Cart";

¥ de view Index.cshtml maakt nu gebruik van

<h2>Your shopping cart</h2> de partial view _CartLines.cshtml, het model
wordt ook doorgegeven aan de partial view

@if (Model.Count() != 0)

{

<partial name="_CartLines" />

<div align="center" class="actionButtons">
<a asp-action="Index" asp-controller="Store" class="btn btn-default">Continue shopping
<a asp-action="CheckOut" asp-controller="Cart" class="btn btn-default">Check out

</div>
}
else
{
<h4>
You don't have any products in your shopping cart,
<a asp-controller="Store" asp-action="Index">start shopping here...
</h4>
}

HoGent Dia 73

MVC advanced — Partial Views

» Voorbeeld vervolg: de partial view _CartLines.cshtml

{

}

</table>

</tr>
</thead>
<tbody>

</tbody>
<tfoot>
<tr>

@model IEnumerable<Beerhall.Models.CartViewModels.IndexViewModel>
<table class="table">
<thead>
<tr>

@foreach (var line in Model)

<tr>

</tr>

de partial view kan gebruik maken van de
ViewData van de parent

<td colspan="4" class="text-right">@($"Total: {ViewData["Total"]:N2} €")</td>

<td></td>
</tr>
</tfoot>

HoGent

Dia 74

Appendix

Caching

HoGent

Appendix - Caching

Response caching adds cache-related headers to responses. These headers specify how
you want client, proxy and middleware to cache responses.

Response caching can reduce the number of requests a client or proxy makes to the web
server. Response caching can also reduce the amount of work the web server performs to
generate the response.

» Is interessant om op pagina’s te plaatsen die steeds naar de
database gaan en toch meestal dezelfde data retourneren

» voorbeeld: StoreController — Index

o wanneer binnen de minuut na een request voor Index weer een
request voor Index komt zal er niet naar de database gegaan worden,
maar wordt de gecachte versie van de pagina aangeleverd

[ResponseCache(Duration = 60)]
public ActionResult Index() {
return View(_beerRepository.GetAll().OrderBy(b => b.Name).TolList());

}

de duration is uitgedrukt in seconden

HoGent Dia 76

Appendix - Caching

» Test it yourself...

o Plaats een breakpoint bij de eerste lijn code in de Index
methode
o Run. De code uitvoering stopt bij dit breakpoint. Run verder.

o De store wordt getoond in de browser. Druk binnen de minuut
weer op F5. De code in de Index wordt niet meer uitgevoerd.
De gecachte pagina wordt weergegeven

¢

Name X | Headers Preview

Response Timing

| bootstrap.css

lnuerny jc

Request URL: http://localhost:2828/Store
Request Method: GET
Status Code: @ 200 OK (from

(disk cache)
Remote Address: [::1]:2828

—

_—

HoGent

Dia 77

Appendix - Caching

» Enkele interessante parameters
o Duration: duur caching in seconden

o Location: bepaalt waar de gecachte gegevens mogen
bewaard worden

=y ResponseCachelocation.Client

- enkel op de client -

3 ResponseCachelocation.Any

° op client en proxy servers =3 ResponseCachelocation.Mone

* niet
o VaryByHeader: als een gespecifieerd onderdeel van de header
verandert zullen de gecachte gegevens ongeldig zijn

o voorbeeld

¥ Response Headers :\L rce
Cache-Control: public,max-age=68

ding:’ gzip
Content-Type: text/html; charset=utf-8

Date: Wed, @7 Dec 2816 22:85:48 GMT
VaryByHeader = "Accept-Language")] Server: kKestrel

[ResponseCache(Duration = 60,

Location = ResponseCachelLocation AnyJ

Transfer-Encoding: chunked
> Vary: Accept-Language,Accept-Encoding

voor meer info over caching zie ook https://docs.microsoft.com/en- X-Powered-By: ASP.NET
us/aspnet/core/performance/caching/response X-SourceFiles: =?UTF-8?B2QzpcVXNLcpjjgcARlImFcRG

F7nc3WhhCRTAHVE alklB et 58 v wOemGa Fhiee] s X717 351

https://docs.microsoft.com/en-us/aspnet/core/performance/caching/response

