HoGent

BEDRIJF
EN
ORGANISATIE

Hoofdstuk 9: Display/Edit annotaties,
Validatie en Authenticatie/Authorisatie

https://github.com/Weblll/09thBeerhallVal.git
https://github.com/Weblll/09thBeerhallAuth.git

HoGent

https://github.com/WebIII/09thBeerhallVal.git
https://github.com/WebIII/09thBeerhallAuth.git
https://github.com/WebIII/09thBeerhallVal.git
https://github.com/WebIII/09thBeerhallAuth.git

Validatie en Authenticatie/authorisatie

1. Inleiding

2. Display/Edit annotaties

3. Validatie

4. Authenticatie

5. Authorisatie

6. async en await

7. OAuth en Openld

8. CSRF: Cross-Site Request Forgery
9. Appendix: Hashing

10. Referenties

HoGent Dia 2

1. Inleiding

» We breiden de Beerhall applicatie verder uit
o Display/Edit annotaties
o Validatie
o Authenticatie en authorisatie

- Authenticatie: Gebruiker moet aanmelden en wordt al dan niet
geauthenticeerd

- Authorisatie: éénmaal de gebruiker geauthenticeerd is, krijgt de
gebruiker bepaalde rechten in de applicatie afhankelijk van zijn
rol/claims.

o Opmerking: er werden een aantal extra properties aan
BrewerEditViewModel toegevoegd...

HoGent Dia 3

Validatie

®

BEERHALL
Vlidatie

W

A

L

HoGent

2. Validatie

» Validatie in MVC kan gebeuren aan de hand van
annotaties. De annotaties brengen we 1 keer aan in
ons model (of viewmodel) en worden dan gebruikt
voor én client side validatie én server side validatie...
o de annotaties zijn voorgedefinieerde attributen

o we zullen eerst enkele annotaties bespreken die niet
gebruikt worden voor validatie

@
Ml
e |
!
¥ QO
Y 4
oy
O,

HoGent

Qverzicht [bewerken]

Aspectoriéntatie is bedoeld als antwoord op een probleem waar alle "klassieke” paradigma’s mee kampen, namelijk de vraag hoe
om te gaan met de zogeheten crosscutfing concerns: handelingen die door het hele programma heen uitgevoerd moeten worden.
Typische voorbeelden hiervan zijn logging en beveiliging: op vrijwel ieder punt in een gemiddeld programma bestaat de behoefte
aan de mogelijkheid om zaken naar een log weg te schriyen om fouten te traceren en zeer veel programma’s moeten op
verschillende punten controleren of de gebruiker van het programma wel gerechtigd is om de opgevraagde handeling uit te voeren.
De "klassieke" paradigma's hebben hiervoor geen makkelijke oplossing en vallen daarom terug op het meerdere malen opnemen
van precies dezelfde code op iedere plaats waar dezelfde handeling uitgevoerd wordt. Met als resultaat dat een verandering aan de
uitvoering van een dergelijic crosscutting concern betekent dat door het hele programma heen code moet worden aangepast.

Als oplossing hiervoor biedt AOD (Aspect Oriented Development) de mogelijkheid een stukje code te schriven dat op een groot
aantal, door de programmeur te definiéren punten, ingevoegd wordt. Dit invoegen gebeurt zonder dat de geschreven code waarin
ingevoegd wordt, aangepast wordt op de invoeging (dat er op een gegeven plaats iets ingevoegd wordt, kan men dus niet zien aan
de programmacode). Om dit voor elkaar te krijgen, geeft de programmeur extern aan de programmacode een aantal punten op
waarin bepaalde code ingevoegd dient te worden. Een apart programma neemt de code van de programmeur en zijn aanwijzingen
over invoegen en stelt daarmee een nieuw programma samen waarin de juiste code op de juiste plaats ingevoegd is.

Er zijn in principe twee tijdstippen waarop het weven (het samenvoegen van code) kan plaatsvinden: tijdens de compilatie van code
naar programma (dit wordt statisch weven genoemd) en tijdens het uitvoeren van het gecompileerde programma (dynamisch
wewveri). In het eerste geval leeft de AOD-uitbreiding op de bestaande techniek in de compiler, in het tweede gevﬁwajrg de
uitbreiding extern aangebracht via een preprocessor.

2. Display/Edit Annotaties

» System.ComponentModel.DataAnnotations

o voorziet in attribuut klassen die toelaten meta-data te
definiéren voor ASP.NET MVC en ASP.NET MVC data controls

o voorbeeld: DisplayAttribute class

gebruik van het attribuut: de naam van de instellen van properties van de klasse adhv
klasse zonder “Attribute” benoemde parameters

[Display(Name = "Street", Prompt = "Street and house number")]

public string Street {

get; set; gebruik van het Display attribuut in de klasse
} BrewerEditViewModel

<div class="form-group">

<label asp-for="Street"></label>

<input asp-for="Street" class="form-control"” />
</div> Edit.cshtml

de tag helpers gebruiken
de meta-data om de
volgende HTML te
genereren

<div class="form-group">
<label for="Street">Street</label>

<input class="form-control" type="text" id="Street" name="Street" placeholder=
/>

</div>

HoGent

Lf
T
I
i
[=]
o
I
5]
SESE——

"Street and house number" value=""

broncode Brewer/Create

Dia 6

2. Display/Edit Annotaties

» System.ComponentModel.DataAnnotations

> maak gebruik van de Object Browser om in
detail te zien wat er voorzien is in klassen...

9

T T T T T T T W T T T T T T T

v v VT VYT TY YWY T T T T T T T

System.ComponentModel.Datafnnotations

%z AssociationAttribute

#z Comparehttribute

#z ConcurrencyCheckAttribute
2 CreditCardAttribute

#3 CustomValidationAttribute
= DataType

#z DataTypeAttribute

“z DisplayAttribute

“z DisplayColumnAttribute
#z DisplayFormatAttribute
#z EditableAttribute

2 EmailAddressAttribute
#z EnumDataTypelttribute
#3 FileExtensionsAttribute
#2 FilterUIHintAttribute

0 [ValidatableObject

1z KeyAttribute

#z MaxLengthAttribute

#z MinLengthAttribute

#2 PhoneAttribute

¥z RangeAttribute

#z RegularExpressionAttribute
#z RequiredAttribute

%z ScaffoldColumnAttribute
#z StringLengthAttribute
#z TimestampAttribute

“z UlHintAttribute

2 UrlAttribute

#2 ValidationAttribute

#2 ValidationContext

#z ValidationException

#z ValidationResult

#z Validator

DisplayAttribute()
GetAutoGenerateField()
GetAutoGenerateFilter()
GetDescription()
GetGroupMame()
Gethlame()

GetOrder()

GetPrompt()
GetShortNamel)
AutoGenerateField
AutoGenerateFilter
Description
GroupMame

Order

Prompt

ResourceType
ShortMame

"Yrerrrrrrerrvr@CccceOOO

public string Name { get; set; }
Member of System.ComponentModel. DataAnnotations.DisplayAttribute

Summary:
Gets or sets a value that is used for display in the UL

Returns:
A value that is used for display in the UL

HoGent

bq Beerhall - Microsoft Visual Studio

File Edit | View | Project Build Debug Team Tools
BN - Q] Solution Explorer Ctrl+Alts L
% ¥& Team Explorer Ctrl+p, Ctrl+M
— E Server Explorer Ctrl+Alt+S
Object Brows [
= SOL Server Object Explorer Ctrl+p, Ctrl+S
Browse: M;
1™ Bookmark Window Ctrl+K, CtrleW
% Call Hierarchy
40 25‘;’ #3 Class View Ctrl+Shift-C
3 g
b * cl E:I Code Definition Window Ctrl+p, D
b #3 d = Document Outline
b % Cr &1 Object Browser Ctrl+Alt+)
i % E‘ (5 Emorlist Ctrlep, E
= D4
[> outout Crrl=Alt+0

Dia 7

2. Display/Edit Annotaties

» System.ComponentModel.DataAnnotations vervolg

o voorbeeld 2: DataTypeAttribute

- |aat toe een meer specifiek type te selecteren; vertelt iets over
de semantiek van de property, dit wordt door browser gebruikt

[DataType(DataType.Currency)]
public int? Turnover {
get; set;
}
[Display(Name = “Email address")]
[DataType(DataType.EmailAddress)]
public string ContactEmail {
get; set;
}
[Display(Name = “Date established")]
[DataType(DataType.Date)]
public DateTime? DateEstablished {
get; set;
}

gebruik van het DataType attribuut in de klasse
BrewerEditViewModel

browser maakt gebruik van de opgegeven types

H (9] G e nt (bekijk het type attribuut van de input

elementen in de HTML broncode...)

Email address

wiezebier

Description

Date #stablished

november 2016 -

Gebruik een "@" in thet e-
mailadres. In ‘wiezebier’
ontbreekt een '@,

/y ma di wo
1 2

T 3 9

14 15 18

21 22 23

28 25 30

do

10
17
24

4 3 i
1 12 13
18 19 20
25 26 27

'3

Dia 8

2. Display/Edit Annotaties

» System.ComponentModel.DataAnnotations vervolg

o voorbeeld 2: DataTypeAttribute, de enum DataType

HoGent

Member name
CreditCard
Currency
Custom

Date

DateTime
Duration
EmailAddress
Html

ImageUrl
MultilineText
Password
PhoneMumber
PostalCode
Text

Time

Upload

url

Description

Represents a credit card number.
Represents a currency value.
Represents a custom data type.

Represents a date value.

Represents an instant in time, expressed as a date and time of day.

Reprasents & continuous time during which an object exists.
Represents an e-mail address.
Represents an HTML file.
Reprasents & URL to an image.
Represents multi-line text.
Represent a password value.
Reprasents & phone number value,
Represents a postal code.
Represents text that is displayed.
Represents a time value.
Represents file upload data type.

Represents a URL value.

Dia 9

2. Display/Edit Annotaties

» Extra

o enkele annotations vinden we in andere namespaces
- voorbeeld: HiddenlnputAttribute

public class BrewerEditViewModel {
[HiddenInput]
public int BrewerId {
get; set;
}

public sealed class HiddenIlnputAttribute : System.Attribute
Member of Microsoft. AspNetCore.Mve

Summary:
Indicates associated property or all properties of associated type should be edited using an
<input> element of type "hidden",

o je kan meertaligheid in je applicatie inbouwen

* Zie https://docs.microsoft.com/en-us/aspnet/core/fundamentals/localization

HoGent

Dia 10

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/localization

2. Display/Edit Annotaties

» Merk op: DataType zorgt niet voor client- of server side

validatie, maar

o zorgt dat de browser HTML5 features kan gebruiken
* bv. calendar control, currency symbol

o zorgt dat de browser per default de data zal renderen in een correct
formaat gebaseerd op je locale

o zorgt dat MVC het juiste field template kan kiezen

» Indien we robuuste validatie willen inbouwen in onze
applicatie zijn er ook annotaties die we hiervoor kunnen
gebruiken...

o MVC genereert dan de nodige JavaScript code voor de controle aan

de client side,
° bovendien gebeurt de controle ook door de Model Binders aan de
server side. Dit heeft als voordeel dat de validatie ook werkt als de
gebruiker javascript disabled in de browser

commit Add Display and Datatype
annotations |

HoGent

3. Validatie

» We hebben reeds data validatie in onze applicatie

> Domein (via code)
o Database (null, not null, constraints)

» Deze validatie wordt pas aan de server side
uitgevoerd...

» In web applicaties is het aangewezen de validatie ook
op de client te doen, zodat een round-trip naar de

server niet nodig is

HoGent Dia 12

3. Validatie

» System.ComponentModel.DataAnnotations
o enkele handige validatie attributen

HoGent

Attribute

Example

Description

Compare

Range

RegularExpression

Required

Stringlength

[Compare
("OtherProperty")]

[Range(10, 20)]

[RegularExpression
("pattern")]

[Required]

[Stringlength(10)]

This attribute ensures that properties must have the
same value, which is useful when you ask the user to
provide the same information twice, such as an e-mail
address or a password.

This attribute ensures that a numeric value (or any
property type that implements IComparable) does not lie
beyond the specified minimum and maximum values.
To specify a boundary on only one side, use aMinValue
orMaxValue constant—for example, [Range (int.
Minvalue, 50)].

This attribute ensures that a string value matches
the specified regular expression pattern. Note that
the pattern has to match the entire user-supplied
value, not just a substring within it. By default, it
matches case sensitively, but you can make it case
insensitive by applying the (?1) modifier—that is,
[RegularExpression("(?i)mypattern")].

This attribute ensures that the value is not empty or

a string consisting only of spaces. If you want to treat
whitespace as valid, use [Required(AllowEmptyStrings
= true)].

This attribute ensures that a string value is not
longer than a specified maximum length. You can
also specify a minimum length: [StringlLength(1o0,
MinimumLength=2)].

Dia 13

3. Validatie

» [Required]
o geeft aan dat een veld verplicht in te vullen is

o er wordt een foutmelding getoond wanneer het veld niet is
ingevuld, we kunnen zelf bepalen welke foutmelding getoond

wordt...
o [Required]
 default foutmelding: “The <prop-name> field is required”
o [Required(ErrorMessage=“Dit veld is verplicht”)]
* foutmelding zoals in de string
o [Required(ErrorMessage=“{0} is verplicht”)]
* foutmelding zoals in de string met {0} vervangen door de DisplayName van de
property.
o [Required(AllowEmptyStrings = false)]
* al dan niet toelaten van lege strings

HoGent Dia 14

3. Validatie

» [Range]

o

een specifiek interval ligt

o

(¢]

- [Range(0, 20)]
- [Range(0.00, 49.99)]

(¢]

het bereik is inclusief de opgegeven grenzen
zonder type specificatie werkt Range op int en op double

voor andere types moet je expliciet het type opgeven, de

grenzen geef je dan als strings mee
- [Range(typeof(decimal), "@.00", "49.99"]
- [Range(typeof(bool), "true", "true", ErrorMessage = "You

must accept the terms")]

HoGent

>

de gebruiker moet de ‘Accept terms’
checkbox aanvinken...

geeft aan dat een property een waarde moet aannemen die in

Dia 15

3. Validatie

» [StringLength]

> bij deze annotatie kan je ook een minimum lengte vermelden
* [StringLength(160, MinimumLength=10)]

» [Compare]

o 2 properties die dezelfde waarde moeten hebben.

o voorbeeld: property ConfirmationPassword moet dezelfde waarde
bevatten als de property Password

* [Compare(“Password”, ErrorMessage="“Password and confirmation

password must match”)]

» In Microsoft.AspNetCore.Mvc namespace: [Remote]
o uitvoeren van client side validatie met een server callback

o voorbeeld: controleren of een opgegeven e-mail uniek is via een action
method IsUnigueEmail in AccountController

[Remote(“IsUniqueEmail"”, "Account")]

public string Email { get; set; }

HoGent

public async Task<JsonResult> IsUniqueEmail(string email) {
var result = await _userManager.FindByEmailAsync(email);
return Json(result != null);

}

Dia 16

3. Validatie - ViewModel

» Annotaties voor validatie in BrewerEditViewModel

public class BrewerEditViewModel {

[Required]
[StringlLength(50, ErrorMessage = "{0} may not contain more than 50 characters")]
public string Name {
get; set;
}
public string Street {
get; set;
}

[DataType(DataType.Currency)]
[Range(@, int.MaxValue, ErrorMessage = "{@} may not be a negative value.")]
public int? Turnover {
get; set;
}

[Display(Name = "Email address")]
[DataType(DataType.EmailAddress)]
[RegularExpression(@"[A-Za-z0-9. %+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}", ErrorMessage = "Email address is not valid")]
public string ContactEmail {
get; set;

HoGent Dia 17

3. Validatie — Client side

» Om de validatie aan de client side te enablen moeten

we de gepaste jQuery libraries toevoegen aan de view
°© jquery.js
+ wordt reeds toegevoegd via _Layout.cshtml
° jguery.validate.js
* de jQuery Validation library
- zie http://docs.jquery.com/Plugins/Validation

* jquery.validate.unobstrusive.js

* adapter library voor omzetten van MVC meta data naar jguery
validate

@section scripts {
<script asp-src-include="1lib/jquery-validation/dist/jquery.validate.js"></script>
<script asp-src-include="1ib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"></script>

} toegevoegd in Edit.cshtml/

deze static javascript content werd bij

de creatie van de applicatie — —————
automatisch toegevoegd in de
wwwroot-folder

HoGent Dia 18

http://docs.jquery.com/Plugins/Validation

3. Validatie — Client side

» Aanpassen van de view

o gebruik validation tag helpers om aan te geven waar
foutmeldingen getoond moeten worden

- validation message tag helper: asp-validation-for
* toont foutmelding voor 1 bepaalde property

<div class="form-group">
<label asp-for="ContactEmail"></label>
<input asp-for="ContactEmail" class="form-control" />

</div>

- validation summary tag helper: asp-validation-summary
* toont alle foutmeldingen

<form asp-action="@action" method="post">
<div asp-validation-summary="All"></div>
<input type="hidden" asp-for="BrewerId" />

HoGent

Dia 19

3. Validatie — Client side

» Resultaat van de client side validatie...

Create brewer Create brewer
* The Name field is required. als we op de Save
Name * Please enter a valid email address. knop klikken wordt er
* Turnover may not be a negative value. niet gepost naar de
server; de summar
The Mame field is required. Name versch’ijnt' y
4
Street .
The Mame field is requirad. Straks zullen we zien
Street and house number dat deze summary
street meer dan alleen maar
Location Street and house number een Opsomming van
. de ‘property
- selectlocstion = ! Location validation errors’ kan
Email address -- select location -- +| bevatten
abe tiidens het editeren Email address
Please enter a valid email address. krijgen we directe abc
Description feedbaCk'" Please enter a valid email address.
Description

Date established
Date established

dd /mm /jjij
dd/mm/jjjj
Turnover
Turnover
-1
-1
Turnover may not be 3 negative value. Turnover may not be a negative value. oD Add Client Side

validation
HOGEITI.' Dia 20

Focus on Client Side validation

o Bekijk de gegenereerde HTML code.
* paginabron weergeven of via developer tools

o Elke input tag bevat attributen startend met data-. Deze
attributen zijn een feature in HTML5, maar volledig backward
compatible met alle moderne browsers (including IE6).

<div class="form-group"»

<label for="Name">Name</label>

¢input class="form-control® type="text" data-val="true" data-val-length="Name may not contain more than 5@ characters" data-val-length-max="58"
data-val-reguired="The Nams field is reguired.” id="Mame" name="Name" value="" /:

</span:
< fdive

* data-val = true: geeft aan dat deze input tag validatie nodig heeft,
en deze wordt dan uitgevoerd door jquery validate

HoGent Dia 21

Focus on Client Side validation

» De attributen

indicates that the field contains validation data and should be processed
by the unobtrusive adapters script.

data-val-{validator name} e.g. data-val-length - contains the error message for the validator.
data-val-{validator name}- e.g. data-val-length-min - zero or more arguments necessary for
{fargument name} performing validation.

data-val

* deze attributen worden door jquery.validate.unobstrusive
vertaald naar jquery validate.

HoGent Dia 22

Focus on Client Side validation

» De attributen

[Range(@, int.MaxValue, ErrorMessage
public int? Turnover {
get; set;

"{@} may not be a negative value")]

\ De annotaties worden vertaald naar
| data-val-xxx attributen

<div class="form-group">
<label for="Turnover":Turnover</label>

mn ."I B

¢input class="form-control” type="number” data-val="true" data-val-range="Turnover may not be a negative valus." data-val-range-max="2147483p47"
data-val-range-min="@" id="Turnover" name="Turnover" wvalue=
¢zpan class="text-danger field-validation-valid" data-valmsg-for="Turnover" data-valmsg-replace="true":></span:
<fdive

HoGent

Dia 23

Focus on Client Side validation

» ValidationSummary

o creéert placeholder voor renderen van alle validatiefouten.
Rendert alle fouten in een lijst

<div asp-validation-summary="All"></div>

¥.:div class="validation-summary-valid"” data-valmsg-summary="true
¥ ul
1li style="display:none f1i
ful
Jdiv

) Na klik op de knop Save worden de
fouten getoond...

¥div class="validation-summary-errors"” data-valmsg-summary="true
Youl
1i>The Name field is required.</li
li*Email address is mot walid«</1li
li>Turnover may not be a negative value.</li
Jful
Sdiv

HoGent Dia 24

Focus on Client Side validation

» Beheer van de client side
libraries gebeurt via de library manager

o zie https://docs.microsoft.com/en-us/aspnet/core/client-
side/libman/libman-vs?view=aspnetcore-3.0

HoGent Dia 26

https://docs.microsoft.com/en-us/aspnet/core/client-side/libman/libman-vs?view=aspnetcore-3.0

3. Validatie — Server side

» De annotaties aangebracht in het ViewModel zullen we
ook gebruiken om server-side validation te doen
o tijdens model binding gebeurt er validatie adhv de annotaties

o in de ModelState property van de Controller klasse wordt
informatie over de binding bijgehouden

- deze property is van het type ModelStateDictionary

public class ModelStateDictionary
Member of

Summary:

Represents the state of an attempt to bind values from an HTTP Request to an action method, which includes validation information.

* via de property IsValid kunnen we te weten komen of er validatie
fouten zijn

public IsValid { get; }
Member of

Summary:

Gets a value that indicates whether any model state values in this model state dictionary is invalid or not validated.

HoGent

Dia 27

3. Validatie — Server side

» De Controller

° indien bij de HttpPost ModelState errors zijn gaan we het formulier
opnieuw presenteren zodat de gebruiker fouten kan verbeteren

Als je simpelweg javascript inhoud @
[HttpPost] uitschakelt in de browser zie je hoe
public IActionResult Create(EditViewModel brewerEditViewModel) { begmg/:/jk deze vglidaktie ISt Maak
i 3 epruik van een pbreakpoint en
- (rsjeistate'lsvahd) { gekfjk de Mode/State..f9
Brewer brewer = new Brewer();
MapBrewerkEditViewModelToBrewer (brewerEditViewModel, brewer);
_brewerRepository.Add(brewer);
_brewerRepository.SaveChanges();
TempData["message"] = $"You successfully added brewer {brewer.Name}.";
}

catch (Exception e) {

TempData["error"] = $"Sorry, er liep iets fout, brouwer {brewer?.Name} kon niet worden gewijzigd";
}

return RedirectToAction(nameof(Index));

}

Als de validatie niet lukt toon dan de
ViewData["IsEdit"] = false;

Create view opnieuw. De SelectList
ViewData["Locations"] = GetLocationsAsSelectlList(); moet ook opnieuw worden

return View(nameof(Edit), brewerEditViewModel); doorgegeven.

} D——

De data die reeds werd ingevuld in het
formulier zal opnieuw getoond worden

HoGent

Dia 28

3. Validatie — Server side

» De Modelstate kan ons nog meer interessante

informatie aanreiken

o voor elke property die de model binder probeert te binden
vind je in de dictionary een entry
- key = naam property, value informatie over de binding.

[Required]

[StringLength(50, ErrorMessage = "{0} may not contain more than 50 characters")]

public string Name {
get; set;
}

Geen client side validatie,

javascript disabled.../’_i\

Create brewer

Name

Name is required...

4) Results View
4@ [0
B Key
4 S Value
& AtternptedValue
- & ChildModes
& Children
4 J Errors
4@ [0]
& ErrorMessage
- & Exception
I @ Raw View
& |sContainerMode
& Key
& Raw\alue
b M SubKey
& ValidationState
[@ MNon-Public members
I @ Mon-Public members

Expanding the Results View will enurnerate the I[Enumerable

{[Mame, Microsoft.AspMetCore.Mvc.ModelBinding ModelStateDictionary+ ModelStateMNode] }
"Mame"

SubKey={Mame}, Key="MName", ValidationState=Invalid

null

null

Count=1
{Microsoft.AspMNetCore.Mvc.ModelBinding. ModelError}
"The Mame field is required.”

null

falze
"Mame"

{Mame}
Inwalid

Dia 29

3. Validatie — Server side

» Model binding en de ModelState

o tijdens de model binding worden data annotations
gecontroleerd en wanneer een waarde niet voldoet wordt dit
geregistreerd in de ModelState

o tijdens model binding kunnen zich nog andere problemen
voordoen
* bv. de string “appel” wordt doorgegeven voor een DateTime

property
- de model binder gaat geen exceptions werpen maar dit
registreren in de ModelState

* zoals je kon zien op vorige slide wordt de “attempted value” steeds
bijgehouden

HoGent Dia 30

3. Validatie — Server side

» De View en de ModelState

o de tag helpers ValidationMessageFor en ValidationSummary
geven de fouten uit de ModelState weer.

* het resultaat is identiek aan de client side validatie

¥ ¢div class="validation-summary-errors” data-wvalmsg-summary="true
¥ <ul
1i>The Mame field is required.</1li
ful

fdiv

span class="text-danger field-validation-error” data-valmsg-for="Name" data-valmsg-replace="true":>The
Mame field is required.</span

HoGent Dia 31

3. Validatie — Server side

» De ModelState
o we kunnen ook zelf errors toevoegen aan de ModelState

public void AddModelError(key, errorMessage)
Member of

Summary:
Adds the specified errorMessage to the Microsoft.AspNetCore.Mvc.ModelBinding.ModelStateEntry.Errors instance that is associated with the specified key.

Parameters:
key: The key of the Microsoft.AspMNetCore Mvc.ModelBinding.ModelStateEntry to add errors to.
errorMessage: The error message to add.

o de key kan de naam van een property bevatten

- dit is een error op property niveau, en zal ook zo opgepikt
worden door de taghelper validation-message-for

o wanneer we de key leeg laten dan voegen we een error toe op
model niveau

- dit is een error die niet gelinkt is aan een specifieke property
- deze error wordt enkel getoond in de validation summary

HoGent Dia 32

3. Validatie — Server side

» In de view kunnen we aangeven welke errors in de
validation summary moeten worden getoond

<div asp-validation-summary="Al1"></div> €n property errors en

model errors
<div asp-validation-summary="ModelOnly"></div> enkel model errors
<div asp-validation-summary="None"></div> geen errors

HoGent Dia 33

3. Validatie — Server side

» voorbeeld: ipv TempData te gebruiken wanneer er
exceptions in het domein geworpen worden kunnen

we een model error toevoegen aan de modelstate en
het formulier opnieuw aanbieden

[HttpPost]
public IActionResult Create(BrewerEditViewModel brewerEditViewModel) {
if (ModelState.IsValid) {
try {
Brewer brewer = new Brewer();
MapBrewerEditViewModelToBrewer (brewertditViewModel, brewer);
_brewerRepository.Add(brewer);
_brewerRepository.SaveChanges();

TempData["message”] = $"You successfully added brewer {brewer.Name}.";
return RedirectToAction(nameof(Index));

}
catch (Exception e) { in combinatie met een ModelOnly validation summary zullen
we nu geen herhaling krijgen van property level errors in de
ModelState.AddModelError("", e.Message); summary
}

}
ViewData["IsEdit"] = false;

ViewData["Locations"] = GetLocationsAsSelectList();
}* (return View(nameof(Edit), brewerkEditViewModel);

Dia 34

3. Validatie — Unit testen

» We kunnen dit ook gebruiken voor onze unit testen...

° bij unit testen gebeurt er geen model binding

o door zelf errors aan de ModelState toe te voegen kunnen we wel testen
of de server side validatie correct verloopt

o voorbeeld: simulatie van ModelState errors
[Fact]

public void Create_ModelStateErrors_DoesNotCreateNorPersistsBrewerAndPassesViewModelAndViewDataToEditView()
{

_locationRepository.Setup(m => m.GetAll()).Returns(_dummyContext.Locations);
_brewerRepository.Setup(m => m.GetBy(1)).Returns(_dummyContext.Bavik);
BrewerEditViewModel brewerEvm = new BrewerEditViewModel(_dummyContext.Bavik);
_controller.ModelState.AddModelError("", "Error message");

var result = Assert.IsType<ViewResult>(_controller.Create(brewerkvm));
Assert.Equal("Edit", result.ViewName);

Assert.Equal(brewerEvm, result.Model);

var locations = Assert.IsType<SelectList>(result.ViewData["Locations"]);
Assert.Equal(3, locations.Count());

var isEdit = Assert.IsType<bool>(result.ViewData["IsEdit"]);
Assert.False(isEdit);

_brewerRepository.Verify(m => m.Add(It.IsAny<Brewer>()), Times.Never());

_brewerRepository.Verify(m => m.SaveChanges(), Times.Never()); Dia 35

3. Validatie — HttpGet methodes

» Ook de HttpGet methodes voor Edit en Delete kunnen we robuuster
maken en gepast reageren als een brewer niet gevonden wordt...

o gebruik maken van Tempdata[“ErrorMessage”] en redirecten naar de Index, of
o een NotFound() retourneren

public IActionResult Edit(int id) {
Brewer brewer = _brewerRepository.GetBy(id);
if (brewer == null)
return NotFound();

ViewData["Locations"] = GetLocationsAsSelectList(brewer.Location?.PostalCode);
return View(new BrewertEditViewModel (brewer));

}

dit retourneert een NotFoundResult

* je kan de middleware configureren om gepast op de NotFound te reageren
simpelste vorm: UseStatusCodePages|()
public void Configure(..) {

‘.
app.UseStaticFiles(); < C 1} | @ localhost:1385/Brewer/Delete/200
app.UseStatusCodePages();

app.UseSession();

)¢}

Status Code: 484; Not Found

}

zie ook https://docs.microsoft.com/en-us/aspnet/core/fundamentals/error-
handling#configuring-status-code-pages

HoGent

Dia 36

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/error-handling#configuring-status-code-pages

3. Validatie — HttpGet methodes

» We kunnen ook unit testen indien de controller bij
HttpGet een NotFoundResult retourneert indien een
onbestaande brouwer wordt opgevraagd

[Fact]
public void Delete_UnknownBrewer_ReturnsNotFound()
{
_brewerRepository.Setup(m => m.GetBy(1)).Returns((Brewer)null);
IActionResult action = _controller.Delete(1);
Assert.IsType<NotFoundResult>(action);
}

©B Add server side validation and extend unit tests

HoGent Dia 37

3. Validatie - Oefening

» Oefening:
o Server side validatie voor Edit
o Extra unit testen voor Edit

HoGent Dia 38

ASP.NET CORE
Individual

User

Accounts

——

4. Authenticatie en Authorisatie

» Beveiliging?

o Authenticatie (verificatie): wie is de gebruiker en heeft hij/zij
toegang tot de applicatie? Gebruiker geeft identificatie in en deze
wordt gevalideerd. Mogelijkheden binnen ASP.NET:

* Individual User Accounts: op formulieren gebaseerde verificatie met
cookieondersteuning. Gebruiker heeft identiteit in, in aanlog formulier,
en na verificatie wordt een geéncrypteerd authenticatie cookie
gegenereerd. Niet geverifieerde verzoeken worden automatisch
omgeleid naar een aanlog formulier.

* OAuth en OpenlD: externe login via 3th party (Facebook, ...)
 Organizational accounts: single-sign-on voor bedienden en business
partners via Active Directory, Azure Active Directory of Office 365

- Windows authenticatie: voor Intranet. Single Sign on via Active Directory

o Authorisatie: o0.b.v. de identificatiegegevens van gebruiker wordt
nagegaan wat een gebruiker mag doen binnen de applicatie. Kan
worden toegekend per gebruiker of per rol.

HoGent Dia 40

4. Authenticatie: Individual User Accounts

Authentication
Cookie

Authenticated

Access Denied @ Authorzec
Logon Page o
Q (Users enter ©
Not their credentials)
0
Authenticated . & @
Authenticated N
D
Authentication ¢ y) Authonzed

Cookie

HoGent Dia 41

4. Authenticatie: Individual User Accounts

» Welcome to ASP.NET Core Identity

ASP.NET Core Identity is a membership system which allows you to add login functionality to your
application. Users can create an account and login with a user name and password or they can use an

external login providers such as Facebook, Google, Microsoft Account, Twitter and more.

You can configure ASP.NET Core Identity to use a SQL Server database to store user names, passwords,

and profile data. Alternatively, you can use your own persistent store to store data in another persistent
storage, such as Azure Table Storage.

HoGent

Dia 42

» ldentity Framework

o APl met klassen en interfaces voor het beheren
van gebruikers, rollen en claims voor een ASP.NET
web applicatie en authenticeren van gebruikers.
« Administratief beheer van User Accounts, Rollen, Claims

 Support voor cookie based authenticatie, 2-Factor Authenticatie via
email of SMS messaging, claim based authenticatie, role based
authorisatie

 Support voor Social log-ins

> Namespace Microsoft.AspNetCore.ldentity

o We bekijken de klassen die een project met “Individual User
Account authentication” bevat: de Models, Views, Controllers, en
andere componenten nodig voor de basis authenticatie/authorisatie

o https://docs.microsoft.com/en-

us/aspnet/core/security/authentication/identity?tabs=visual-
studio%2Caspnetcore2x

HoGent Dia 43

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?tabs=visual-studio,aspnetcore2x

4. Authenticatie: Identity Framework

» Twee belangrijke abstracties worden gebruikt in

Managers Stores
|UserStore
UserM anager
IUserloginStore
|UserlaimStora
RoeManzger
|UserRoleStore
IRoleStore
SigninManager
|UserPasswordStore

HoGent

Managers are high-level classes
which an application developer
uses to perform operations,
such as creating a user, in the
ASP.NET Identity system.

Stores are lower-level classes
that specify how entities, such as
users and roles, are persisted.
Stores are closely coupled with
the persistence mechanism, but
managers are decoupled from
stores which means you can
replace the persistence
mechanism without disrupting
the entire application.

Dia 44

4. Authenticatie: Identity Framework

» De architectuur

ASP.NET Applications

Managers e.g. UserManager, RoleManager

e.g. UserStore, RoleStore

e.g. ApplicationDbContext
Data Access Layer

e.g. SAL Server, MySQL,
Data Source Windows Azure Table
Storage

HoGent

Dia 45

4. Authenticatie: Identity Framework

» De data die Identity Framework gebruikt bevat o.a.

Data

sers

Lser
Claims

User
Logins

Raoles

HoGent

Description

Registered users of your web site. Includes the user Id and user name. Might include a hashed
password If users log in with credentials that are specific to your site (rather than using
credentials from an external site like Facebook), and security stamp to indicate whether anything
has changed in the user credentials. Might also include email address, phaone number, whether
two factor authentication is enabled, the current number of failed logins, and whether an account
has been locked.

A set of statements (or claims) about the user that represent the user's identity. Can enable
greater expression of the user's identity than can be achieved through roles.

Information about the external authentication provider (like Facebook) to use when logging in a
user.

Authorization groups for your site. Includes the role Id and role name (like "Admin" or
"Employee").

Dia 46

4. Authenticatie: IUA template

» Project met authenticatie — Individual User Accounts

o instelling bij selectie template tijdens aanmaken van de applicatie
Create a new ASP.NET Core web application

‘.NETCDre ~| | ASP.MET Core 3.0 -
- - -
G Empty Authentication
(&
An empty project template for creating an ASP.NET Core application. This template does not have any content in it. Me Authentication
Change
g
A project template for creating an ASP.MET Core application with an example Controller for a RESTRul HTTR service.
This template can also be used for ASP.MET Core MV Views and Controllers,
Advanced
@ Web Application Configure for HTTPS
A project template for creating an ASP.MET Core application with example ASP.NET Razor Pages content. D Enable Docker Support

.) (Requires Docker Desktop)
Web Application (Model-View-Controller)

©l

A project template for creating an ASP.MET Core application with example ASP.NET Core MYC Views and
Controllers, This template can also be used for RESTul HTTP services,

Angular

D>/

A project template for creating an ASP.MET Core application with Angular

React.js Change Authentication
A project template for creating an ASP.MET Core application with React.js
Get additional project templates Store user accounts in-app v | Learn more

) No Authentication Select this eption to create a project that includes a local user accounts store,

(@ Individual User Accounts
() Work or School Accounts

() Windows Authentication

HoGent

Learn more about third-party open source authentication options oK | | Cancel

4. Authenticatie: IUA template

» Een blik op een verse MVC Web applicatie met

Individual User Accounts authenticatie
o de nuget package Microsoft.EntityFrameworkCore.Tools

 laat toe om met migrations te werken

HoGent Dia 48

4. Authenticatie: IUA template

» Een blik op een verse Web appli

User Accounts authenticatie
o de nuget packages

ASP.NET Core |dentity is the membership system for building ASP.NET Core
membership, login, and user data. ASP.NET Core Identity allows you to add
application and makes it easy to customize data about the logged in user.

4 '@ Packages
& Microsoft. AspMetCore.Diagnostics.EntityFramewarkCore (3.0.0)
B Microsoft. AspNetCore.ldentity.EntityFrameworkCore (3.0.0)

A Microsoft.AspMetCore.ldentity.Ul (3.0.0)

@ Michosoft.EntityFrameworkCore.SqlServer (3.0.0)
| Micr oft.EntityFrarmneworkCore. Tools (3.0.0)

A =

catie met Individual

Microsoft.Extensions.ldentity.Stores =00

web applications, including
login features to your

[Microsoft. AspNetCore.ldentity.

EntityFrameworkCore s1oprevew

ASP.NET Core Identity provider that uses Entity Framework Core.

195280 @

deze package zorgt ervoor dat we kunnen werken
met Entity Framework zodat we gebruik zullen
kunnen maken van een SQL Server DB om gegevens
van gebruikers, rollen, ... op te slaan.

dit is de defaut razor pages buiklt-in U

I voor Identity

HoGent

laat toe om met DB migrations te werken

Dia 49

4. Authenticatie: IUA template

» Een blik op een verse Web applicatie met IUA
authenticatie

abg] Solution 'Beerhall' (1 project)

d Beerhall

& Connected Services

B Dependencies
b &M Properties
D
4

Identity maakt gebruik van
razor pages

E@ wwwroot

ol Areas

4 50| |dentity
4 5. Pages

a [®] _ViewStart.cehtml

Controllers
Data
Models

P &c* ErroViewModel.cs

e
|- EI - FI - |}

Boal Views

b L] appsettings.json
B

B

& C* Program.cs slechts 1 bestand!?

6 ©* Startup.cs hier wordt aangegeven welk Layout page
gebruikt wordt voor Identity,

al de rest zit in de nuget package Identity.Ul

HoGent Dia 50

4. Authenticatie: Identity

» Een blik op een MVC Web applicatie met Individual
User Accounts authenticatie
o enkele gewijzigde klassen

F]

4

Data
Migrations
i ApplicationDbContext.cs

Er is een ApplicationDbContext aanwezig en een eerste migratie die het aanmaken van de DB
tabellen voor Identity bevat...

HoGent

Dia 51

4. Authenticatie: configuratie Identity

» Een blik op een MVC Web applicatie met Individual
User Accounts authenticatie

o de ApplicationDbContext erft van IdentityDbContext
° het type user voor ldentity is impliciet IdentityUser

namespace Beerhall.Data

{
public class ApplicationDbContext : IdentityDbContext
{

public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
: base(options)

{

}
}

o straks zullen we onze mapping aan deze klasse toevoegen...

HoGent

Dia 52

4. Authenticatie: configuratie Identity

» Een blik op een MVC Web applicatie met [UA
authenticatie — StartUp.cs
o Configuratie van lIdentityFramework in ConfigureServices(...)

Registratie van alle Identity framework gebruiken met
services die Identity de default ‘IdentityUser’ klasse

framework nodig

heeft

services.AddDefaultIdentity<IdentityUser>(options =>
options.SignIn.RequireConfirmedAccount = true)
.AddEntityFramewo;kStores<ApplicationDbContext>(); ‘\\\

/ \ Bij registratie moet je via e-mail je nieuwe

Voor de configuratie van o.a. De toegangspoort tot de databank waarin account bevestigen, kunnen we weglaten

UserStore, RoleStore, ClaimStore, ... de data van users, rollen, claims, ... zal (en terugvallen op de default waarde: false)
opgeslaan worden

De connectionstringis
leeg: DefaultConnection
uit de Configuration
wordt gebruikt

HoGent Dia 53

4. Authenticatie: configuratie Identity

» Een blik op een MVC Web applicatie met [UA

authenticatie — StartUp.cs

o Configuratie van IdentityFramework in Configure(...)

app.UseHttpsRedirection();
app.UseStaticFiles();

app-UseRouting();

app.UseAuthentication(); /

app.UseBAuthorization();

Authenticatie & Authorization checks gebeuren in
de MVC controllers, het verwerken van cookies en
detectie van 401 errors moeten gebeuren

vooraleer de request in het MVC framework zitten

Merk op: het is belangerijk dat UseRouting,
UseAuthentication, UseAuthorization en
UseEndpoints in deze volgore in de pipeline
voorkomen!

app.UseEndpoints(endpoints =>

{
endpoints.MapControllerRoute(
name: "default",
pattern: "{controller=Home}/{action=Index}/{id?}");
|endpnints.MapRazorPages();
1)

HoGent

Dia 54

4. Authenticatie: Identity

» Een blik op een MVC Web applicatie met Individual

User Accounts authenticatie

o de klasse IdentityUser
- de default implementatie van IdentityUser<TKey> die een string

gebruikt als primaire sleutel

public class IdentityUser : Microsoft. AspNetCore.ldentity.|dentityUser <string>

Member of Microsoft.AspNetCore.ldentity

per default is de primary
key voor een user van het
type string, desgewenst

o |dentityUser : IdentityUser<String>

Per default zal het email adres
van een gebruiker ook als
UserName gebruikt worden

De primary key: Id

Essentiele properties: een unieke
UserName en een hashed version
van het paswoord

HoGent

Summary: kan je dit type
The default implementation of Microsoft.AspMNetCore.ldentity. dentityUser'1 which uses a string as a primary key. V?ra,”derenlm een type
die je zelf kiest...

IdentityUser erft volgende properties:

& AccessFailedCount
& Claims

& ConcurrencyStamp
& Email

EmailConfirmed

& d

LockoutEnabled

LockoutEnd

& Lagins

& MNormalizedEmail

& NormalizedUserMame
& PasswordHash

4 PhoneMumber

& PhoneNumberConfirmed
A Roles

F SecurityStamp

& TwoFactorEnabled
& UserMame

Identity Framework kan bijvoorbeeld bijhouden hoeveel
keer een user een niet geslaagde inlogpoging doet, en
de account desgwenst een tijd afsluiten

Dia 55

4. Authenticatie: configuratie Identity

» Merk op: je kan desgewenst gebruik maken van een
eigen gedefinieerde user-klasse. Je laat deze erven van
ldenityUser en kan deze dan uitbreiden met extra
properties.

o voorbeeld

public class ApplicationUser : IdentityUser {
public string Name { get; set; }
public string FirstName { get; set; }
public string Street { get; set; }

public Location Location { get; set; }

}

* je moet nu in de configuratie wel aangeven dat je met jouw type user wil werken en
eveneens je ApplicationDbContext laten erven van
IdentityDbContext<ApplicationUser>

public class ApplicationDbContext : IdentityDbContext<ApplicationUser:>

services.AddDefaultIdentity<ApplicationlUser>()
.AddEntityFrameworkStores<ApplicationDbContext>();

HoGent Dia 56

4. Authenticatie: configuratie Identity

» Een blik op een MVC Web applicatie met Individual
User Accounts authenticatie
o De connectionstring DefaultConnection in appsettings.json

"ConnectionStrings™: {
"DefaultConnection”™: "Server=(localdb)\\mssgllocaldb;Database=aspnet-Beerhall-@3BE1F6C-C59E-4846- =+
AA32-69C1ACCCF6CA; Trusted Connection=True;MultipleActiveResultSets=true”

iy

A\ 4

Per default wordt
localdbserver gebruikt,
we kunnen dit nu reeds
aanpassen, ook de naam
van de DB passen we

aan...

"ConnectionStrings": {
"DefaultConnection™: "Server=.;Database=Beerhall;Trusted Connection=True;MultipleActiveResultSets=trus"

Is

LocalDB is created specifically for developers. It is very easy to install and requires no management, yet it offers the same T-50L language,
programming surface and client-side providers as the regular SQOL Server Express, In effect the developers that target SQL Server no longer
have to install and manage a full instance of 3QL Server Express on their laptops and other development machines, Maoreover, if the
HOGent simplicity (and limitations) of LocalDE fit the needs of the target application environment, developers can continue using it in production,
as LocalDB makes a pretty good embedded database too.

4. Authenticatie: de databank

» Als we het update-database commando geven kunnen
we de ldentity tabellen terugvinden in de databank

° merk op: daar wij gebruik maken van drop-create strategie
gaan we verder in deze cursus geen gebruik maken van

migrations

=

= @ BeerhallAuth

O - = I = = = R e R

Database Diagrams
Tables
System Tables
FileTables
External Tables
Graph Tables
B dbo._ EFMigrationsHistory
B dbo.AspMNetRoleClaims
FR dbo.AspMetRoles
B dbo.AspMNetUserClaims
B dbo.AspMNetUserLogins
FR dbo.AspMetUserRoles
B dbo.AspMNetUsers
B dbo.AspMNetUserTokens

HoGent

Dia 58

4. Authenticatie: de databank

Claims voor rollen...

\

Bevat de rollen

. (o=
AspNetRoleClaims AspNetRoles AspNetUserRoles
2 Id 7 ld 9 Userld
Roleld Name T Roleld
ClaimType MNormalizedMame
ClaimValue ConcurrencyStamp
Clai AspNetUsers
Usaégs voor ko=t Column Name Data Type Allow Mulls
AspNetUserClaims 7 1 nvarchar(450) 0
\ 2 Id
UszerM har(256] R .
Userld =& ar_”e nvarchar(256) AspNetUserLogins
ClaimType Eorr:ahzedUserName nvarc:arizz ? LoginProvider
mai nvarchar] .
ClaimValue ¥ ProviderKey
MormalizedEmail nvarchar(236) ProviderDisplayMame
Tokens voor EmailConfirmed bit 0 Vearld
two factor ser
authentication - PasswordHash nvarchar(MAX)
ASPNEtUSETTDkEI‘IS SecurityStamp nvarchar(MAX)
\ B Userld ConcurrencyStamp nvarchar(MAX)
% LoginProvider PhoneMumber nvarchar(MAX)
B Name PhoneMumberCenfirmed bit O voor 3rd party
Value TwoFactorEnabled bit O auhte;jnticc?tion book
: roviders (Faceboo
LockoutEnd datetimeoffset(7) p . 7
M Twitter, Google, ...)
LockoutEnabled bit O
AccessFailedCount int O
O

HoGent

IdentityUser

Bevat de properties van

Dia 59

4. Authenticatie: Register

» Als je de applicatie runt kan je kennismaken met de
authenticatie...

Beerhall Home Privacy Register Login

Welcome

Learn about building Web apps with ASP.NET Core.

HoGent Dia 60

4. Authenticatie: Register

» Als je de applicatie runt kan je kennismaken met de
authenticatie en het default gedrag van ldentity...

Register

Create a new account.

Log in

Email .
Use a local account to log in.
Email

Passwaord
Password

Confirm password

Remember me?

Forgot your password?

Register as a new user

HoGent Dia 61

4. Authenticatie: Register

» Indien we de default implementatie willen bekijken
en/of wijzigen zullen we moeten gebruik maken van
scaffolding om aan de onderliggende code te kunnen

» ldentity framework is gebaseerd op Razor pages, dit is
een nieuw onderdeel van ASP.NET Core,
geintroduceerd in ASP.NET Core 2.0

HoGent Dia 62

Focus on Razor Pages

» Razor Pages is a new feature of ASP.NET Core that
makes coding page-focused scenarios easier and more
productive.

o MVVM-framework Model — View — ViewModel

* bij MVC zitten het Model en de Controller actions niet bij de View
zelf, de code zit verspreid

* een razor page bevat bij de View ook het Model en de Controller
actions, alle verantwoordelijkheden van de pagina zitten samen

Dia 63

HoGent

Focus on Razor Pages

MVVM pattern

MWW stands for Model-View-View Model. This pattern supports two-way data binding between view and View model. This enables automatic propagation of changes, within
the state of view model to the View. Typically, the view model uses the observer pattern to notify changes in the view model to model.

ViewhModel

MVVIM Pattern

01. Model
The Model represents a set of classes that describes the business logic and data. It also defines business rules for data means how the data can be changed and
manipulated.

02. View

The View represents the Ul components like CSS, jQuery, html etc. It is only responsible for displaying the data that is received from the controller as the result. This also
transforms the model(s) into UL,

03. View Model

The View Maodel is responsible for exposing methods, commands, and other properties that helps to maintain the state of the view, manipulate the model as the result of
actions on the view, and trigger events in the view itself.

HoGent Dia 64

Focus on Razor Pages

» In een notendop:

o alle razor pages worden in een folder Pages geplaatst

- de plaats van de razor page in de folder Pages of een subfolder
hiervan bepaalt de overeenkomstige URL die leidt naar deze
pagina
 per default zoekt de runtime naar razor pages in deze map
* Index is de default pagina wanneer de url geen pagina bevat

* voorbeeld
File name and path matching URL
FPages/index.cshtml / or fIndex
SPages/Contact.cshtml fContact
FPages/Store/Contact.cshtml JStore/Contact
SPages/Store/Index.cshtml fStore or /Store/Index
HoGent

Dia 65

Focus on Razor Pages

» In een notendop:

o de View
- .cshtml bestand die op de eerste lijn de directive @page bevat

- via de @page geef je aan dat dit een razor-page is

* een razor page handelt requests direct af, de requests passeren dus
geen controller

- gebruik @model om een model te specifiéren die je kan
gebruiken in de razor page

* het model wordt geimplementeerd in een .cshtml.cs bestand

HoGent Dia 66

Focus on Razor Pages

» In een notendop:

> het Model

* .cshtml.cs bestand
* het bestand noemt <PageName>Model en leeft in dezelfde
namespace als de View
- via deze klasse scheidt je de logica van de presentatie
* bevat
 page handlers voor requests die naar de pagina worden gestuurd
- data nodig om de pagina te renderen

- gebruik DI om dependencies te injecteren en deze klasse unit
testbaar te maken

HoGent Dia 67

Focus on Razor Pages

» In een notendop:
> het Model (vervolg)
- je definieert in deze klasse de handler methods
* typische handlers:

* OnGet —initializeer de toestand om de pagina te kunnen presenteren
* OnPost — afhandeling van form submits

* maak gebruik van de optionele suffix Async voor assynchrone
functies

- maak gebruik van client/server side validatie attributen in deze
klasse

HoGent

Dia 68

4. Authenticatie: Register

» voorbeeld: implementatie van Register

o |aat toe dat een nieuwe gebruiker zich registreert
> indien we de code voor register willen bekijken/aanpassen

moeten we gebruik maken van scaffolding

HoGent

Redirects

e
aspnet-Beerhall-B92703; ks

Beerhall.csproj

CihiUsers\stefa\sourcelrepd

ChUsershstefal\source\repq

Build
Rebuild
Clean
View
Analyze
Pack

? Publish...

Overview

Scope to This

Solutien Explorer

> 0 x

@ o5 8@ =]

Search Solution Explorer (Ctrl+5)

EKI'_J Selution 'Beerhall' (1 project)
e
pnnected Services
zpendencies
operties
wwroot
eas
Identity
Pages
& |2 _ViewStart.cshtml
pntrollers
ta
odels

New Solution Explorer View ErrorViewMaodel.cs
File Nesting p WS
.) psettings.json
& Edit Beerhall.csproj bgram.cs
Area... Add » artup.cs
%1 New ltem... #i Manage NuGet Packages...
a Existing [tem Shift+Alt+A 2 Manage Client-5ide Libraries...
MNew Scaffolded ltem... Manage User Secrets
#9 MNew Folder L} Setas StartUp Project
Container Orchestrator Support Debug b
i treol s

P

Dia 69

4. Authenticatie: Register

Add Scaffold

4 |nstalled

4 Common
API

b MVC
Razor Pages

Layout

gj Identity

Click here to go online and find more scaffolding extensions.

Identity
by Microsoft
v1.000

Adds code required for using ASP.NET Core
Identity in the application.

Id: IdentityScaffolder

Selecteer hier de
onderdelen die je wenst
te wijzigen

Hier geef je aan welke de
DbContext klasse is die
gebruikt wordt

HoGent

/

Add Identity *

]

Select an existing layout page, or specify a new one:

A rcounts

Manaoe! Lavout.cshim

oges_La)

(Leave empty if it is set in a Razor _viewstart file)
[] Override all files
Choose files to override
D Account\ConfirmEmail
I:‘ Account\ForgotPassword
AcceuntiLegin

I:‘ Account\StatusMessage D Account\AccessDenied
I:‘ Account\ConfirmEmailChang I:‘ Account\ExternalLogin
D Account\ForgetPasswordConf |:| Account\Lockout

I:‘ Account\LoginWith2fa |:| Account\LoginWithRecoveryC |:| Account\Logout

I:‘ Account\Manage\Layout D Account\Manage\ManageMa D Account\Manage' StatusMessi
D Accounti\Manage\ChangePass |:| Account\Manage) DeletePerso |:| Account\ManagehDisablefa
I:‘ Account'Manage\DownloadP |:| Account\ManagehEmail |:| Accounti\Manage\Enablefuth
I:‘ Account\Manage\Externallog D Account\Manage\ GenerateRe D Account\Managehindex

I:‘ Account\Manage\PersonalDat I:‘ Account\Manage'\ResetAuthe I:‘ Account\Manage\SetPasswon
D AccountiManageShowRecov |:| Account\Manage TwoFactorA Account\Register

I:‘ Account\RegisterConfirmatior |:| Account\ResetPassword |:| Account\ResetPasswardConfil

Data context class: v |
Use SCOLite instead of SOL Server

User class: +

pplicationDbContext (Beerhall.Data)

‘ Add |‘ Cancel |

Dia 70

4. Authenticatie: Register

i Areas

d o
F |

4 5l |dentity

Pages
Account

+[#] _Viewlmports.cshtml
b +[# Login.cshtml /

4 +[#] Register.cshtml
[+ + c* Register.cshtml.cs

-

de razor page

het page model gebruikt
door de razor page

HoGent

Dia 71

Register.
Create a new account.

4. Authenticatie: Register =

» Registratie van een nieuwe user: Register

> Via constructor injectie worden een aantal essentiéle services,
Managers, van ldentity Framework beschikbaar in het page
model Register.cshtml.cs

public class RegisterModel : PageModel
{
private readonly SignInManager<IdentityUser> _signInManager;
private readonly UserManager<IdentityUser> _userManager;
private readonly ILogger<RegisterModel> _logger;
private readonly IEmailSender _emailSender;

public RegisterModel(
UserManager<IdentityUser> userManager,
SignInManager<IdentityUser> signInManager,
ILogger<RegisterModel> logger,
IEmailSender emailSender)

{
_userManager = userManager;
_signInManager = signInManager;
_logger = logger;
_emailSender = emailSender;

}

HoGent Dia 72

4. Authenticatie: Register

Register.

Create a new account

Email
Password

Confirm password

Register

» Registratie van een nieuwe user: Register HttpGet
o Register.cshtml.cs - OnGet

in MVC komt dit public async Task OnGetAsync(string returnUrl = null)
overeen met een {
HttpGet action de returnUrl wordt
method Register in ReturnUrl = returnUrl; aangeleverd via
een controller ExternallLogins = (await model binding; na
genaamd Account _signInManager.GetExternalAuthenticationSchemesAsync()).TolList(); een succesvolle

N registratie zal je

} terug gestuurd

o Register.cshtml.cs - InputModel

public class InputModel

{

deze inner klasse

) bevat het viewmodel
[Required] met de validatie
[EmailAddress] attributen

[Display(Name = "Email")]
public string Email { get; set; }

[Required]
[StringLength(100, ErrorMessage = "The {0} must be at least {2} and at max {1} characters

long.", MinimumLength = 6)]

[DataType(DataType.Password)]
[Display(Name = "Password")]
public string Password { get; set; }

[DataType(DataType.Password)]
[Display(Name = "Confirm password")]
[Compare("Password", ErrorMessage = "The password and confirmation password do not match.")]

public string ConfirmPassword { get; set; }

worden naar de
pagina vanwaar de
registratie werd
aangeroepen

via het [BindProperty] attribuut
wordt aangegeven dat de
publieke property Input moet
worden gebruikt tijdens model
binding

[BindProperty]
public InputModel Input { get; set; }

Dia 73

4. Authenticatie: Register

Register.

Create a new account

Email
Password

Confirm password

Register

» Registratie van een nieuwe user: Register HttpGet

o Register.cshtml

@page <

dit is een razor page

@model RegisterModel 4
@ de page maakt gebruik van RegisterModel

ViewData["Title"] = "Regi
b
<h2>@ViewData["Title"]</h2>
<div class="row">

<div class="col-md-4">
od="post">

<form asp-route-returnUrl="@Model.ReturnUrl" m

<h4>Create a new account.</h4>
<hr />

<div asp-validation-summary="All" class="text-danger"></di
<div class="form-group">

<label asp-for="Input.Email"></labe

via model binding zal de ingevoerde waarde
gekoppeld worden aan Input.Email die deel

uitmaakt van RegisterModel

<input asp-for="Input.Email" class="form-control" />

</div>
<div class="form-group">
. some code ommitted here ..
<button type="submit" class="btn btn-default">Register</button>
</form>
</div>

</div> invoegen van JQuery validation via een partial view op een async manier (uitleg later)

@section Scripts {
}* (5 <partial name="_ValidationScriptsPartial” /> 4__—————“’——_—_—————____—_—__—>
oue

Dia 74

Register.

Create a new account

Email

4. Authenticatie: Register =

Register

» Registratie van een nieuwe user: Register - HttpPost
o Register.cshtml.cs - OnPostAsync

public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
returnUrl = returnUrl ?? Url.Content("~/");
ExternalLogins = (await _signInManager.GetExternalAuthenticationSchemesAsync()).ToList();
if (ModelState.IsValid)

{
var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };
var result = await _userManager.CreateAsync(user, Input.Password);
if (result.Succeeded)
{
_logger.LogInformation("User created a new account with password.");
// some code omitted here
{
await _signInManager.SignInAsync(user, isPersistent: false);
return LocalRedirect(returnurl);
}
}
foreach (var error in result.Errors)
{
ModelState.AddModelError(string.Empty, error.Description);
}
} Bij een geldige ModelState wordt eerst een IdentityUser object aangemaakt, de nodige properties krijgen hun waarde
via de Input-property die via model binding een invulling kreeg

. Merk op:
// If we got this far,

age(); - de property UserName krijgt de waarde van e-mail
H p G‘éﬁf - het paswoord van een identityUser kunnen we niet instellen, het wordt enkel in gehashte vorm bijgehouden

Register.

Create a new account

Email

4. Authenticatie: Register -

Register

» Registratie van een nieuwe user: Register - HttpPost
o Register.cshtml.cs - OnPostAsync

public async Task<IActionResult> OnPostAsync(string returnUrl = null)

retupnUrl = returnUrl ?? Url.Content("~/");

(ModelState.IsValid) {

var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };
var result = await _userManager.CreateAsync(user, Input.Password);

De UserManager wordt gebruikt om een volwaardige Idenity user te creéren. De user heeft gegarandeerd een unieke UserName (~e-
mail adres) en is met het gehashte paswoord opgeslagen in de DB in de tabel AspNetUsers. Via de returnwaarde result kunnen we
achterhalen of deze operatie al dan niet succesvol was.

CreateAsync(TUser user, string password)
Member of Microsoft.AspNetCore.ldentity.UserManager<TUser>

. . Summary:
OnPOStASynC Is een asynchrone methOde" ASynChrone methodes Worden Verderop toegellcht. Creates the specified user in the backing store with given password, as an asynchronous operation,
BEIC’ngrijk: Parameters:
) R . user: The user to create.
- maak steeds gebruik van await bij een aanroep naar een asynchrone methode password: The password for the user to hash and store.
- wanneer je await gebruikt in een methode dan moet je de methode async declareren en moet die Returns: _) B
methode een Task<ReturnType> retourneren (de runtime weet hoe het hiermee verder kan werken...) The System.Threading.Tasks Task that represents the asynchronous operation, containing the
Microsoft.AspMetCore.ldentity.IdentityResult of the operation.

public virtual System.Threading.Tasks.Task<Microsoft.AspNetCore.ldentity.ldentityResult>

4. Authenticatie: Register

Register.

Create a new account

Email
Password

Confirm password

Register

» Registratie van een nieuwe user: Register - HttpPost
o Register.cshtml.cs - OnPostAsync

public async Task<IActionResult> OnPostAsync(string returnUrl = null)

{

returnUrl = returnUrl ?? Url.Content("~/");
ExternalLogins = (await _signInManager.GetExternalAuthenticationSchemesAsync()).ToList();

if (ModelState.IsValid)

{

var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };
var result = await _userManager.CreateAsync(user, Input.Password);
if (result.Succeeded)
{
_logger.LogInformation("User created a new account with password.");
// some code omitted here

{

await _signInManager.SignInAsync(user, isPersistent: false);

return LocalRedirect(returnurl); A

Bij een succesvolle CreateAsync operatie wordt de SigninManager gebruikt omﬁi‘gecreéerde gebruiker in te loggen en wordt er

geredirect naar de returnUrl. Dit is een LocalRedirect die de applicatie beschermt Yoor Open Redirect Attacks

foreach (var error in result.Errors)

public virtual System.Threading.Tasks.Task SigninAsync(TUser user, bool isPersistent, [string . .
authenticationMethod = nulll) error.Description);

Member of Microsoft. AspNetCore.ldentity SigninManager<TUser=

Summary:
Signs in the specified user.

isPersistent: Flag indicating whether the sign-in cookie should persist after the browser is closed.
authenticationMethod: Name of the method used to authenticate the user.

Ho...

The task object representing the asynchronous operation.

Lay for

baramaters De cookie wordt niet gepersisteerd, en dus verdwijnt wanneer we
o The e ~~,| de browser sluiten

user: The user to sign-in.

Dia 77

4. Authenticatie: Register

Register.
Create a new account.
Enail
Password
Conim pessword

Register

» Registratie van een nieuwe user: Register - HttpPost

o Register.cshtml.cs - OnPostAsync

public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{

returnUrl = returnUrl ?? Url.Content("~/");

ExternalLogins = (await _signInManager.GetExternalAuthenticationSchemesAsync()).ToList();
if (ModelState.IsValid)
{

var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };

var result=_await _userManager.CreateAsync(user, Input.Password);

if (result.Succeeded)

{
_logger.LogInformation("User created a new account with password.");
// some code omitted here
{
await _signInManager.SignInAsync(user, isPersistent: false);
return LocalRedirect(returnurl);
}
deze errors zullen |}

getoond worden
in de Validation
summary

// If we got this far, something failed, redisplay form

HoGfit ™"

foreach (var error in result.Errors)

[34 Microsoft.AspNetCore.ldentity.ldentityResult

{ @ Microsoft.AspNetCore.ldentity.ldentityResult.|dentityResult()

ModelState.AddModelError(string.Empty, error.Descri{ een |[Enumerable van IdentyErrors

} die zich eventueel voor hebben
gedaan tijdens de creatie

/

@ Failed(Microsoft. AspMetCore ldentity. | dentityError{])
@ ldentityResult()
@ Tostring()
LW & Errors
Succeeded
/: Success

een bool die aangeeft of de
creatie al dan geslaagd is

public class IdentityResult
Member of Microsoft.AspNetCore.ldentity

Summary:
Represents the result of an identity operation.

4. Authenticatie: Register

» Register — het resultaat

° bij een succesvolle register vinden we de nieuwe user in de
DB, en werd een cookie aangemaakt

Register

Create a new account.

Email
Password

Confirm password

¢

Mame Value Domain | Pa... | Expires f Max-... | Size | Http... | Secure | Sam...
AspMetCoreAntiforgery.-evGAmvD 11k CfDJBIZNN... |localhost |/ Session 190 Strict
AspMetCore.Antiforgery.k2loCagisPY CfDJBIZNN... |localhost |/ Session 190 Strict
AspMetCoreldantity. Application CfDJBIZNMN... | localhost |/ Session 656 | J Lax
AspMetCore Myve.CookieTempDataProvider | CfDJBIZMN... | localhost |/ Session 236 | Lax

Deze cookie wordt nu met elke request meegestuurd en geanalyseerd in de middleware...

)

HoGent

100 % -
[Resuts I3 Messages

1

—|SELECT TOP 1888 [Id] e
,[Email] SQLServer
, [NermalizedUserName]
,» [PasswordHash]
, [UserName]

FROM [aspnet-WebAppIdentityTemplate-d@85d73cb-dbd@-419c-98bc-8d865984695c]. [dbo]. [AspNetUsers]

Id Email Normalized UserMame PasswordHash UserMName
23%b20eec-bacb-4665-ac3b-2 364 A 186fa Jupke@hogentbe JUPKE@HOGENT.BE AQAAAAEAACCOAAAAEHRLDKIGESwIk/GOApaCPzFfdIDdBDE... Jupke®@hogent be

Dia 79

4. Authenticatie: Register

» Register [HttpPost] — het resultaat

° bij een onsuccesvolle register krijgen we een overzicht van de
errors

Register Register

Reg | Ster Create a new account. Create a new account.

Create a new account.

* The password and confirmation ® The Password must be at least 6
password do not match. and at max 100 characters long.
* User name jan@hogentbe’ is
already taken. Email Email
Email jan2@hogent.be jan2@hogent.be
jan@hogent.be Password Password
password L | e
The Password must be at least 6 and at
Confirm password max 100 characters long.
'"l Confirm password

Confirm password
The password and confirmation

password do not match.

.

Deze error wordt herhaald. In de validation summary

UserName (~e-mail) moet uniek zijn! kiezen we in plaats van All beter voor ModelOnly! We
kunnen dit aanpassen in Register.cshtml:

. . . R " Blijkbaar legt Identity by default heel wat
<div asp-validation-summary="ModelOnly restricties op wachtwoorden
class="text-danger"></div>

HoGent Dia 80

4. Authenticatie: Configuratie

» ldentity werkt met default gedrag die je kan

overschrijven in de StartUp klasse. Enkele voorbeelden:
o Password policy @ Paswordoptions(

RequireDigit
» EQLI?FE 4 By default is de RequiredLength = 6,
X RequiredLength staan de boolse properties op true en
& RequiredUniqueChars is RequiredUniqueChars = 1.

& Requirelowercase
& RequireMonAlphanumeric
& Requirelppercase

’
© LockoutOpti
User S IOCkOUt @ LockoutOptions{ By default wordt een user na 5
& AllowedForNewlsers verkeerde pogingen locked out voor 5
& DefaultLockoutTimeSpan minuten; ook nieuwe gebruikers
& MaxFailedAccesshtternpts kunnen locked out worden.
o User validation @ UserOptions(

AllowedUserMameCharacters
& RequireUniqueEmail

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity-
configuration?tabs=aspnetcore2x

HoGent

StartUp.cs Dia 81

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity-configuration?tabs=aspnetcore2x

4. Authenticatie: Configuratie

» Voorbeeld configuratie in de methode
ConfigureServices van StartUp.cs

services.Configure<IdentityOptions>(options =>

{
// Password settings
options.Password.RequiredLength = 8;
options.Password.RequireNonAlphanumeric = false;
// Lockout settings
options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(30);
// User settings
options.User.RequireUniqueEmail = true;
1

HoGent

StartUp.cs Dia 82

4. Authenticatie: Controller/Views

» Logout

o AccountController > LogOff methode
* Logt de gebruiker uit
- Redirect naar Home

» Login
o AccountController > Logln methode
* Logt de gebruiker in via de SignInManager
 Redirect naar de Url in de Request string

» AccountController bevat ook

* ForgotPassword/ResetPassword
* VerifyCode: 2 factor authenticatie
* Externe login (via social providers)

HoGent Dia 83

THE

BEERHALL

Beerhall
& IUA template

4. Authenticatie: Integratie Beerhall

» We gaan onze Beerhall integreren in de application
template gebaseerd op Individual User

4 Changes (24)
m 0% _Beerhall_Authenticatie.sln
el Beerhall
4 Controllers
©* BrewerController.cs [add]
4 Data
4 Mappers
C# BeerConfiguration.cs [add]
C* BrewerConfiguration.cs [add]
€* LocationCenfiguration.cs [add]
4 Repositories
C# BrewerRepository.cs [add]
C# LocationRepository.cs [add]
©* ApplicationDbContext.cs
C# BeerhallDatalnitializer.cs [add]
4 Muodels

Domain

A v

ViewModels
* BrewerkditViewModel.cs [add]
4 Views\Brewer
Delete.cshtml [add]
Edit.cshtml [add]
Index.cshtml [add]
C# Startup.cs
4 Beerhall. Tests
rl Controllers
C* BrewerControllerTest.cs [add]
- Data

- Models\Domain

% DemeTord e el

Accounts

C* DummyApplicationDbContext.cs [add]

HoGent

4 Gt Views
P &0 Brewer 4 5| Data
B sl Home 4 5. Mappers
" Shared P & c* BeerConfiguration.cs
a[d Viewlmperts.cshtml b &c* BrewerConfiguration.cs
i [A] ViewStart.cshtml P &c* LocationConfiguration.cs
4 5| Repositories
[& BrewerRepository.cs
4 5 Controllers P & C* LocationRepository.cs
I» & c* BrewerController.cs B & c* ApplicationDbContext.cs
b & c* HomeController.cs I+ & c* BeerhallDatalnitializer.cs
4 5 Models 4 57 Beerhall.Tests

]

B

i/ Domain

& C* Beer.cs

& C* Brewer.cs

& C* |BrewerRepository.cs

& C* |LocationRepository.cs

R =

a C* Location.cs

i bl ViewModels

I & c# BrewerEditViewModel.cs
& * ErrorViewModel.cs

P

¥

F]

¥

i Dependencies
i Controllers
P &c* BrewerControllerTests.cs
&l Data
B &c* DummyApplicationDbContext.cs
il Models
4 & Domain
& c# BeerTest.cs
P & c# BrewerTest.cs

Dia 85

4. Authenticatie: Integratie Beerhall

» We gaan onze Beerhall integreren in de application
gebaseerd op Individual User Accounts (vervolg)

public class ApplicationDbContext : IdentityDbContext
{

public DbSet<Brewer> Brewers { get; set; }
public DbSet<Location> Locations { get; set; }

public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
: base(options)

protected override void OnModelCreating(ModelBuilder builder)
{
base.OnModelCreating(builder);
builder.ApplyConfiguration(new BrewerConfiguration());
builder.ApplyConfiguration(new LocationConfiguration());
builder.ApplyConfiguration(new BeerConfiguration());

"ConnectionStrings": {

"DefaultConnection":
"Server=. ;Database=BeerhallAuth;Trusted_Connection=True;MultipleActiveResultSets=true"

¥

Onze DbSets en de Mappers werden
toegevoegd aan de
ApplicationDbContext

De databank zal BeerhallAuth noemen

4. Authenticatie: Integratie Beerhall

AspNetRoleClaims AspNetRoles AspNetUserRoles
7 i 7 Iid 7 Userld
el ——
Roleld Mame % Roleld
ClaimType MormalizedMame
ClaimValue ConcurrencyStamp
AspNetUsers
7 Id
AspNetUserTokens
UserMame
% Userld
. . NormalizedUserMName
% LoginProvider
Email
% Mame
MormalizedEmail
Value
EmailCenfirmed
PasswordHash
SecurityStarmp
AspNetUserLogins ConcurrencyStamp
% LeginProvider PhoneNumber

% ProviderKey
ProviderDisplayMame
Userld

AspNetUserClaims

7 i
Userld
ClaimType

ClaimValue

PhoneMumberConfirmed
TwoFactorEnabled
LockoutEnd
LockoutEnabled

AccessFailedCount

Brewer

% Brewerld
BrewerMame
Description
ContactEmail
DateEstablished
Street
LocationPostalCode

Turnover

Location

% PostalCode

Mame

Beer

% Beerld
MName
Description
AlcoholByVolume
Price

Brewerld

commit Integrate Beerhall with the IUA template

HoGent

4. Authenticatie: Integratie Beerhall

» We kunnen nu onze Datalnitializer methode bijwerken
en enkele IdentityUsers toevoegen tijdens de seeding

° in onze Datalnitializer hebben we hiervoor naast de
ApplicationDbContext ook nood aan de UserManager
o we kunnen dit via een DI chain bewerkstelligen

- vergelijk dit met de DI chain voor de repositories
* in de BrewerController injecteren we een BrewerRepository
* in de BrewerRepository injecteren we de ApplicationDbContext

o we gaan de applicatie refactoren zodat dit mogelijk wordt...

HoGent Dia 88

4. Authenticatie: Integratie Beerhall

» Stap 1

° in de klasse BeerhallDatalnitializer injecteren we de
UserManager

public class BeerhallDataInitializer {
private readonly ApplicationDbContext _dbContext;
private readonly UserManager<IdentityUser> _userManager;

public BeerhallDataInitializer(ApplicationDbContext dbContext,
UserManager<IdentityUser> userManager) {
_dbContext = dbContext;

_userManager = userManager;

HoGent Dia 89

4. Authenticatie: Integratie Beerhall

» Stap 2
° in een private async method maken we de users aan

- de methodes van ldentity zijn async, de methode waarin we ze
gebruiken wordt dus eveneens async

- een async void methode retourneert een Task

private async Task InitializeUsers() {
string eMailAddress = "beermaster@hogent.be";
IdentityUser user = new IdentityUser { UserName = eMailAddress, Email = eMailAddress };

await _userManager.CreateAsync(user, "P@sswordl");

eMailAddress = "jan@hogent.be";
user = new IdentityUser { UserName = eMailAddress, Email = eMailAddress };
await _userManager.CreateAsync(user, "P@sswordl");

HoGent Dia 90

4. Authenticatie: Integratie Beerhall

» Stap 2 - vervolg

° in de Datalnitializer roepen we de methode InitializeUsers aan
- de Datalnitializer wordt dus ook een async methode
- de aanroep wordt voorafgegaan door await

public async Task InitializeData() {
_dbContext.Database.EnsureDeleted();
if (_dbContext.Database.EnsureCreated()) {
await InitializeUsers();
Location bavikhove = new Location { Name = "Bavikhove", PostalCode = "8531" };

HoGent Dia 91

4. Authenticatie: Integratie Beerhall

» Stap 3
> |n de StartUp klasse moeten we nu de aanroep naar
InitializeData aanpassen want dit is nu een async methode

* merk op: de Configure methode zelf kunnen we niet async maken,
dit is een methode van het framework

* via Wait() kunnen we wel aangeven dat we hier zullen wachten
tot de geretourneerde Task beéindigd is

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
BeerhallDataInitializer beerhallDataInitializer) {

beerhallDatalnitializer.InitializeData().Wait();

HoGent Dia 92

4. Authenticatie: Integratie Beerhall

» Je kan de applicatie runnen en de resulterende DB
bekijken
» Je kan in/uitloggen als een van de users uit de

BeerhallDatalnitializer
o beermaster@hogent.be of jan@hogent.be

-]SELECT *
FROM [BeerhallAuth].[dbo].[AspNetUsers]
100% -
ER Resuts gl Messages
Id UserMName Nomalized UserName Email Normalized Email EmailCorfimed Passwol rdHash
1 EibdeﬂSB—?ddd—d%GadS?—cddBa&aMaSﬂ beemaster@hogent be BEERMASTER@HOGENT BE beemaster@hogentbe BEERMASTERE@HOGENTBE 0 AQAAAAEAACCQAMAAE]
2 ea11855e-cdB0-4b57-8c9d-He33B75032 jan@hogent be JANEHOGENT BE jan@hogent be JAN@HOGENT BE 0 AQAAAMEAACCOAMAAE]

» Je kan je als nieuwe user registreren

commit Seed IdentityUsers

HoGent Dia 93

mailto:beermaster@hogent.be
mailto:jan@hogent.be

Authorisatie

®

THE

BEERHALL

Authorisatie

HoGent

4. Authorisatie

» Momenteel kan iedereen op onze site Brewers
beheren. We gaan nu zorgen dat enkel gebruikers die
geauthenticeerd zijn én administrator zijn dit kunnen...

1. Inleiding

» Als administrator wil ik...
o Brouwers kunnen toevoegen
o Brouwers kunnen wijzigen
o Brouwers kunnen verwijderen
o Brouwers kunnen raadplegen
» Als klant wil ik...
o Alle bieren kunnen raadplegen
o Bieren kunnen toevoegen aan mijn winkelmandje
o De inhoud van mijn winkelmandje kunnen bestellen

uit Hfdstk 8...

HoGent Dia 95

4. Authorisatie

» Via het AuthorizeAttribute kunnen we actions in een
controller afschermen

o een request zal de action(s) voorzien van dit attribuut niet
uitvoeren vooraleer een check is gebeurd

- default check: een user is ingelogd

- je kan dit uitbreiden met parameters en/of je eigen authorisatie
check bouwen

» Via het AllowAnonymousAttribute kunnen we
aangeven dat actions kunnen uitgevoerd worden
zonder authorization check

» Deze attributen zijn gedefinieerd in de namespace
Microsoft.AspNetCore.Authorization

HoGent Dia 96

4. Authorisatie

De toegang tot de action methods in deze

controller is nu beperkt tot ge-authenticeerde
[Authorize] < users.

namespace BeerhallMVC.Controllers {

public class BrewerController : Controller { Als je dit attribuut boven de controller klasse

private readonly IBrewerRepository _brewerRepository; plaatst scherm je automatisch elke action in de

private readonly ILocationRepository _locationRepository; controller af. Je kan het attribuut ook specifiek
boven acties die je wil afschermen plaatsen...

public BrewerController(IBrewerRepository brewerRepository, ILocationRepository locationRepository) {
_brewerRepository = brewerRepository;
_locationRepository = locationRepository;

Dit attribuut overschrijft het attribuut dat op de
controller werd geplaatst. Op deze manier is de
Index toch voor iedereen bereikbaar...

[AllowAnonymous] 4
public IActionResult Index() {
IEnumerable<Brewer> brewers = _brewerRepository.FindAll().OrderBy(b => b.Name).TolList();

ViewData["TotalTurnover"] = brewers.Sum(b => b.Turnover);
return View(brewers);

public IActionResult Edit(int id) {
Brewer brewer = _brewerRepository.FindBy(id);
ViewData["Locations"] = GetLocationsAsSelectList(brewer?.Location?.PostalCode);
return View(new BrewertEditViewModel (brewer));

[HttpPost]
public IActionResult Edit(BrewerEditViewModel brewerEditViewModel) {
if (ModelState.IsValid)

[AllowAnonymous] [AllowAnonymous]

[Authorize]

[AllowAnonymous] [Authorize]
HoGent

4. Authorisatie

» Wanneer we nu zonder inloggen een brewer proberen
te editeren worden we omgeleid naar de login pagina.

De return-url wordt als request parameter -
doorgegeven, eens we zijn ingelogd komen we op de
Edit pagina
> merk op dat de index nog steeds bereikbaar is voor iedereen...
(i— N m;EE'h: IocaIhosl:4-430);f'lde:ity#\ccounﬂmgiﬂ?ReturnUrI:%EFBrew'er%EFEdiT%EFG

Beerhall Home Privacy

Log in

Use a local account to log in. Use another service

details on setting up this ASP

taf@hogent be external services.

Password

commit Add Authorize and AllowAnonymous attributes

Dia 98

Focus on ldentity middleware en filters

» Middleware en filters...

o een request passeert door de
middleware pipeline (zie hoofdstuk 6)

o eens de request in het MVC framework
komt worden enkele filters uitgevoerd
voor/tijdens/na de uitvoering van
de action method (dit noemen we de
filter pipeline)

o de response passeert op de weg terug
weer door de middleware pipeline

HoGent

Request

MVC Action

(Filter Pipeline)

| Invocation Pipeline

Dia 99

Focus on Identity middleware en filters

» Wat gebeurt precies wanneer een gebruiker niet is
ingelogd en klikt op Brewer/Edit?

de request passeert inkomend de

Identity middleware

o er wordt geen authenticatie
cookie gevonden en dus is er
geen ‘Signed In User’

Request

_—

[

|

Invocation

4

— — — — — —

MVC Action

(Filter Pipeline)

|
|
|
Pipeline |
|
|

de response passeert uitgaand de
Identity middleware, deze is default
geconfigureerd
> om 401 responses om te zetten naar
302: found response
de redirect URL is Account/Login

de oorspronkelijke URL wordt in de
vorm van request parameters
toegevoegd aan de redirect URL

de Authorize filter wordt uitgevoerd en hier wordt
vastgesteld er geen SignedInUser is, en dat er wel een
[Authorize] attribuut is...

HOGent ° het resultaat is een 401 response: Unauthorized

Dia 100

Focus on Identity middleware en filters

» De filter pipeline

Request

Other Middleware
I

Routing Middleware

Action Selection

MVC Action
Invocation Pipeline
(Filter Pipeline)

HoGent

Authorization Filters

Resource Filters

Model Binding

Action Execution

Action Result Conversion Action Filters

Exception Filters

Result Filters

Result Execution

Authorization filters are used to
determine whether the current
user is authorized for the
request being made

Different filter types run at different points within the pipeline. Some filters, like
authorization filters, only run before the next stage in the pipeline, and take no action
afterward. Other filters, like action filters, can execute both before and after other parts of
the pipeline execute, as shown below.

Dia 101

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters#authorization-filters

Focus on Identity middleware en filters

» De configuratie van de application’s cookie gebeurt in de

ConfigureServices methode van de StartUp klasse

HoGent

4 w8 Microsoft.AspNetCore Authentication.Cockies
4 {} Microsoft.AspMetCore.Authentication.Cookies
b %z ChunkingCookieManager
#z CookieAuthenticationDefaults
#3 CookieAuthenticationEvents
#2 CookieAuthenticationHandler
-
#z CookieSignedinContext
#z CookieSigningInContext
#z CookieSigningOutContext
*z CookieValidatePrincipal Context
+0 |CookieManager
*0 [TicketStore
b #z PostConfigureCookieAuthenticationOptions
I {} Microsoft.AspMNetCore.Builder
I {} Microsoft.Extensions.Dependencylnjection
I {} Microsoft.Extensions.Logging
=8 Microsoft. AspNetCore.Authentication.Core
=8 Microsoft.AspNetCore. Authentication.Facebook
=8 Microsoft. AspNetCore.Authentication.Google
o8 Microsoft. AspNetCore.Authentication.JwtBearer
=8 Microsoft. AspNetCore.Authentication MicrosoftAccount
=8 Microsoft.AspNetCore. Authentication.OAuth
=0 Microsoft. AspNetCore.Authentication.OpenldConnect
=8 Microsoft.AspNetCore. Authentication, Twitter
=B Microsoft.AspNetCore Authorization

v v T T T v v 7

e

CookieAuthenticationOptions()
AccessDeniedPath
Cookie

CookieDomain
CookieHttpOnly
CookieManager
CookieName
CockiePath
CookieSecure
DataProtectionProvider
Events

ExpireTimeSpan
LoginPath

LogoutPath
ReturnUrIParameter
SessionStore
SlidingExpiration
TicketDataFormat

Yehehrrrrerrrerrrreereer

publlc class CookieAuth entlcatmn Optlons

h
Member of Mlcrosoﬁt AspNetCore.. Authen‘tlcatlon Cookies

Summary:
Configuration options for
Microsoft.AspMNetCore.Authentication.Cookies.CookieAuthenticationOptions.

Summary:

The ReturnUrlParameter determines the name of the query string parameter which is appended by the middleware
when a 407 Unauthorized status code is changed to a 302 redirect onto the login path. This is also the query string
parameter looked for when a request arrives on the login path or logout path, in order to return to the original url

after the action is performed.

Summary:

unauthorized status code.

The LoginPath property informs the middleware that it should change an outgoing 407 Unauthorized status code into
a 302 redirection onto the given login path. The current url which generated the 401 is added to the LoginPath as a
query string parameter named by the ReturnUrlParameter, Once a request to the LoginPath grants a new Signin
identity, the ReturnUrlParameter value is used to redirect the browser back to the url which caused the original

Dia 102

Focus on Identity middleware en filters

» Configuratie ldentity middleware
> voorbeeld

services.ConfigureApplicationCookie(options =>
{
options.Cookie.Name = "YourAppCookieName";
options.Cookie.HttpOnly = true;
options.ExpireTimeSpan = TimeSpan.FromMinutes(690);
options.LoginPath = "/Account/MyLogin";
options.LogoutPath = "/Account/Logout";
options.AccessDeniedPath = "/Account/AccessDenied";
// Requires “using Microsoft.AspNetCore.Authentication.Cookies;"

options.ReturnUrlParameter =
CookieAuthenticationDefaults.ReturnUrlParameter;

1)

Bij een 401 wordt nu geredirect naar de action
method MyLogin in de AccountController...

HoGent Dia 103

4. Authorisatie

» De Login — HttpPost (Login.cshtml.cs)

public async Task<IActionResult> OnPostAsync(string returnUrl = null)
{
returnUrl = returnUrl ?? Url.Content("~/");
ExternalLogins = (await _signInManager.GetExternalAuthenticationSchemesAsync()).ToList();
if (ModelState.IsValid)
{
var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };
var result = await _userManager.CreateAsync(user, Input.Password);
if (result.Succeeded)
result = await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "customer"));
if (result.Succeeded)
{
_logger.LogInformation("User created a new account with password.");
// further code omitted

HoGent

Dia 104

4. Authorisatie

» We kunnen de authorisatie verfijnen door gebruik te
maken van rollen en/of claims.

o Role based authorization

* rollen laten toe dat we groepen van gebruikers als eenzelfde gaan
beschouwen voor authorisatie

o Claims based authorization

- maakt gebruik van key/value pairs die iets vertellen over een
gebruiker (geboortedatum, ssn, gender, sirname, ...)

- is flexibeler en krachtiger dan role based authorization

o We gaan claims based authorization gebruiken om het
onderscheid te maken tussen administrators en klanten

When an identity is created it may be assigned one or more claims issued by a trusted party. A claim is name value pair that represents what the subject
is, not what the subject can do. For example you may have a Drivers License, issued by a local driving license authority. Your driver's license has your date
of birth on it. In this case the claim name would be DateOfBirth, the claim value would be your date of birth, for example 8th June 1970 and the
issuer would be the driving license authority. Claims based authorization, at its simplest, checks the value of a claim and allows access to a resource based
upon that value. For example if you want access to a night club the authorization process might be:

The door security officer would evaluate the value of your date of birth claim and whether they trust the issuer (the driving license authority) before
granting you access. Dia 105

4. Authorisatie: Claims

» Claims based authorisation
o Stap 1: een authorisatie policy definiéren

- een policy is een verzameling van condities waaraan een
user moet voldoen om toegelaten te worden tot een
bepaalde resource.

- je definieert een policy door de Authorization service te
registreren en via de options de policy te beschrijven

services.AddAuthorization(options => {

options.AddPolicy("AdminOnly", policy => policy.RequireClaim(ClaimTypes.Role, "admin"));

options.AddPolicy("Customer"”, policy => policy.RequireClaim(ClaimTypes.Role, "customer"));

})s

in de methode ConfigureServices(...) van StartUp.cs

De Customer policy beschrijft dat de user een claim van het type ‘Role’ moet hebben en dat deze bovendien de waarde
“customer” moet hebben.

HoGent

Dia 106

4. Authorisatie: Claims

» Claims based authorisation

o de policy die we definieerden verwacht dat een bepaalde
claim aanwezig is én dat die een bepaalde waarde heeft

o een simpele policy verwacht gewoon de aanwezigheid van
een claim, voorbeeld

services.AddAuthorization(options => {
options.AddPolicy("HasMobile", policy => policy.RequireClaim(ClaimTypes.MobilePhone));

s

HoGent Dia 107

4. Authorisatie: Claims

» Claims based authorisation
o de klasse ClaimTypes

public static class ClaimTypes
Member of System.Security.Claims

Summary:
Defines constants for the well-known claim types that can be assigned to a subject. This class cannot be inherited.

Ernail
Expiration
Expired
Gender
GivenMame
Group5id

Hazh
HomePhone
IsPersistent
Laocality
MobilePhone
Mame
Mameldentifier
OtherPhone
PostalCode
PrimaryGroup5id
Primarysid
Role

Rza

SerialMumber Enkele voorbeelden van ClaimTypes

Iy v 7 7

HoGent

Dia 108

4. Authorisatie: Claims

» Claims based authorisation

o Stap 2: zorgen dat de users de gepaste claims krijgen
- BeerhallDatalnitializer voor users die ge-seed worden

private async Task InitializeUsers() {

string eMailAddress = "beermaster@hogent.be";

ApplicationUser user = new ApplicationUser { UserName = eMailAddress, Email = eMailAddress };
await _userManager.CreateAsync(user, "P@sswordl");

await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "admin"));

eMailAddress = "jan@hogent.be";

user = new ApplicationUser { UserName = eMailAddress, Email = eMailAddress };

await _userManager.CreateAsync(user, "P@sswordl");

await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "customer™")); }

* Register voor nieuwe users (dit worden automatisch ‘customers’)

public async Task<IActionResult> OnPostAsync(string returnUrl = null) {

returnUrl = returnUrl ?? Url.Content("~/");

if (ModelState.IsValid) {
var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };
var result = await _userManager.CreateAsync(user, Input.Password);
if (result.Succeeded)

result = await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "customer"));

if (result.Succeeded)

{

HoGent Dia 109

4. Authorisatie: Claims

» Claims based authorisation

o Stap 3: gebruik de policy samen met het Authorize attribuut
op controllers en/of action methods

[Authorize(Policy = "AdminOnly")]
public class BrewerController : Controller {
private readonly IBrewerRepository _brewerRepository;
private readonly IlocationRepository _locationRepository;

public BrewerController(IBrewerRepository brewerRepository, ILocationRepository locationRepository) {
_brewerRepository = brewerRepository;
_locationRepository = locationRepository;

}

[AllowAnonymous]

public IActionResult Index() {
IEnumerable<Brewer> brewers = _brewerRepository.GetAll().OrderBy(b => b.Name).ToList();
ViewData["TotalTurnover"] = brewers.Sum(b => b.Turnover);

return View(brewers);

H 0 G e n t Enkele voorbeelden van ClaimTypes Dia 110

4. Authorisatie: Claims

» Indien een gebruiker is ingelogd maar geen claims
heeft die aan de policy voldoen
o krijg je van MVC een 403 response: Forbidden

- per default wordt er geredirect naar Account/AccesDenied

- gebruik scaffolding van Identity om deze pagina desgewenst aan
te passen

Beerhall Home Privacy

Access denied

You do not have access to this resource

HoGent Dia 111

4. Authorisatie: Claims

» Claims based authorisation

o Merk op dat indien er meerdere policies op een
controller/action gebruikt worden ze allemaal moeten slagen
om toegang te verkrijgen

[Authorize(Policy = "AdminOnly")]
public class BrewerController : Controller {
private readonly IBrewerRepository _brewerRepository;
private readonly IlLocationRepository _locationRepository;

public BrewerController(IBrewerRepository brewerRepository, IlLocationRepository locationRepository) {
_brewerRepository = brewerRepository;
_locationRepository = locationRepository;

}

[Authorize(Policy = “Customer")]

public IActionResult Index() {
IEnumerable<Brewer> brewers = _brewerRepository.GetAll().OrderBy(b => b.Name).ToList();
ViewData["TotalTurnover"] = brewers.Sum(b => b.Turnover);
return View(brewers);

}

Om nu aan de Index methode te kunnen moet je én aan de policy
AdminOnly én aan de policy Customer voldoen...

H 0 G e n t Enkele voorbeelden van ClaimTypes Dia 112

4. Authorisatie: Claims

» Claims based authorisation

o Je kan meer complexe policies bouwen door zelf een custom
policy handler te implementeren
- voorbeeld: op basis van een DateOfBirth claim toegang verlenen
aan users die ouder zijn dan 21 jaar
» zie https://docs.microsoft.com/en-

us/aspnet/core/security/authorization/policies#tsecurity-
authorization-policies-based

HoGent

Enkele voorbeelden van ClaimTypes

Dia 113

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/policies#security-authorization-policies-based

4. Authorisatie: Claims

» resultaat in DB na de seeding

ISELECT TOP 1608 [Id]
,[ClaimType]
;[ClaimValue]
,[UserId]
FROM [Beerhallauth].[dba].[AspNetUserClaims]
100 % -
£ Resutts [J3 Messages
[d ClaimType ClaimValue Userld
1 1 | hitp://schemas microsoft com/ws,/2008/06/idertity/claims/role | admin 8085bdab=272-4d8b-9bc 7-c662112 70060
2 2 hitp://schemas microsoft.com/ws 2008/ 06 identity/claims./role customer f3bedbbh-2872-4%e-S9ale-edcdba7d1286

SIEELECT TOP 1008 [Id]
,[Email]
, [UserName]
FROM [BeerhallAuth].[dbc].[AspNetUsers]

% -
1 Results Lj; Messages
Id Email UserMame
. B085bdabe272-4d8h-Sbc7chRe11a7hbbl | beermaster@hogertbe besmaster@hogent be
fibedbb5-2872-4%e-9aleedc3ba/d1286 jan@hogent be jan@hogent be

commit Add claims-based authorization

Dia 114

ldentity in Views

®

THE

BEERHALL

Identity in
de Views

HoGent

5. ldentity in de Views

» De Layout view maakt gebruik van een partial view

_LoginPartial
o Partial views worden in detail in volgend hoofdstuk behandeld

<nav S%ass:"navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom box-shadow mb-3">

<div class="container">
Beerhall
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target=".navbar-collapse" aria-
controls="navbarSupportedContent”
aria-expanded="false" aria-label="Toggle navigation">

</button>
<div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse'

">

<partial name="_LoginPartial" />
<ul class="navbar-nav flex-grow-1">

<1li class="nav-item">

Homex/a>
</1li>
<li class="nav-item">

Privaqgy
</1li>

 Beerhall Home Privacy Hello jan@hogentbe! Logout
</div>
i Brewers
</div>
Add a brewer
</nav>
Name Street Location Turnover Date established

8531 Bavikhove 20.000.000,00 € 26/12/1990 Detail | Edit | Delete

HOGent Bavik | Rijksweg 33 B

5. ldentity in de Views

» _LoginPartial

@using Microsoft.AspNetCore.Identity

@inject SignInManager<IdentityUser> SignInManager
@inject UserManager<IdentityUser> UserManager

De managers worden geinjecteerd in de cshtml pagina

@if (SignInManager.IsSignedIn(User)) User is de gebruiker die momenteel is ingelogd

{

<form asp-area="Identity" asp-page="/Account/Logout" asp-route-returnUrl="@Url.Action("Index", "Home", new { area = "" })"
method="post" id="logoutForm" class="navbar-right">

<ul class="nav navbar-nav navbar-right">
<1li>

<a asp-area="Identity" asp-page="/Account/Manage/Index" title="Manage">Hello @UserManager.GetUserName(User)!

:ﬁ? De Name claim van de ingelogde gebruiker wordt opgehaald
<button type="submit" class="btn btn-link navbar-btn navbar-link">Logout</button>
</1i>

</form>
}
else
{
<ul class="nav navbar-nav navbar-right">
<a asp-area="Identity" asp-page="/Account/Register”>Register</1li>
<a asp-area="Identity" asp-page="/Account/Login">Login</1i>

}

—HoGent

Dia 117

Asynchronous programming

®

THE

BEERHALL

async

HoGent

6. Synchronous vs Asynchronous

» Synchronous — Wacht op het resultaat alvorens te
returnen

- |Data data = DownloadFile(...);
ProcessData(data);

BLOCKED N

» Asynchronous — Returnt onmiddellijk, zal call back
uitvoeren als resultaat ontvangen Task

representeert

o Task<IData> future = DownloadFileAsync(...); een
asynchrone

future.ContinueWith(data => ProcessData(data)); operatie die in
dit voorbeeld
een |IData
object zal
returnen

DownloadFileAsync ProcessData

HoGent

Dia 119

6. Asynchronous

» Asynchroon programmeren — eenvoudig.
o “async” and “await” keywords

* Geen callbacks meer nodig

- Zorgt voor compiler magic

- Voorbeeld: registreren van een gebruiker

{

{

public async Task<IActionResult> Register(RegisterViewModel model, string returnUrl = null)

ViewData["ReturnUrl"] = returnUrl;
if (ModelState.IsValid)

var user = new ApplicationUser { UserName = model.Email, Email = model.Email };
var result = await _userManager.CreateAsync(user, model.Password);
if (result.Succeeded)

{
// For more information on how to enable account confirmation and password reset please ..
await _signInManager.SignInAsync(user, isPersistent: false);
_logger.LogInformation(3, "User created a new account with password.");
return RedirectToLocal(returnuUrl);
}
AddErrors(result);

HoGent

Dia 120

6. Asynchronous

» Compiler magic

o async keyword informeert de compiler dat het gaat om een
asynchrone methode
* Een asynchrone methode
* Conventie: Async suffix voor de methode naam (behalve in de Controller)
* Returnt steeds een Task (voor void) of Task<T> voor returntype T
* Bevat minstens 1 await

o await markeert een punt in de code waar met de uitvoering van de
rest van die code wordt gewacht totdat de uitvoering van de
asynchrone methode is beéindigd. Wel wordt de controle
geretourneerd naar de “caller” methode waar wordt verdergegaan
met de uitvoering van de code. De code na de await wordt
gecompileerd als een callback van de asynchrone Task(thread). De
bijhorende context (variabelen,....) wordt bijgehouden. Als de taak
beéindigd is wordt verdergegaan met de uitvoering van de rest van
de methode. Hierbij wordt gebruik gemaakt van de synchronisation
context.

HoGent Dia 121

6. Asynchronous

» Open het project MultiThreading.sIn

} Run de applicatie Continues executing....
The main thread continues executing
static void Main(string(]) Eggﬂy:gain
{
DolongTask();
Console.WriteLine("The main thregd continues executing");

Console.ReadLine();

]l Stap 1

public static void DolongTask() «

{

Task.Run(new Action(LongTask)); //Start een Task(thread)
Console.WriteLine("Continues executing....");

}
Stap 3 Stap 2
public static void LongTask()

{
Console WriteLine("Byebye"); l Stap 2 gaat

Thread.Sleep(5000); //5 seconden \;egfg in
Console WriteLine("back again"); tf?read

} Dia 122

6. Asynchronous

» Vervang DolLongTaskMethod door
DolLongTaskMethodAsync

static void Main(string[])

The main thread continues executing

{
| DolongTaskAsync(); |
Console WriteLine("The main thread continues/ executing");
Console.ReadLine();
} Stap 1
public stahDoLongTaskAsync{] — Dit wordt gecompileerd als
{] | callback methode van de
await Jask.Run(new Action(LongTask)); ——— asynchrone Task en wordt pas
S Console. WriteLine("Continues executing"); uitgevoerd als de taak
) beéindigd is.
stap3 Stap 2
public static void LongTask()
{

Console WriteLine("Byebye");
Thread.Sleep(5000); //5 seconden

Console WriteLine("back again");
—HO—} S (gain”) Dia 123

6. Asynchronous

o Een taak (class Task) representeert een asynchrone operatie
die een resultaat kan teruggeven. (Task retourneert void,
Task<T> retourneert T). De status van een taak kan worden
opgevraagd door de calling code. Meer over de status op
http://msdn.microsoft.com/en-
us/library/system.threading.tasks.taskstatus(v=vs.110).aspx

Running

RanTo

Cancelled Completion

HoGent Dia 124

http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskstatus(v=vs.110).aspx

StartButton_Click event handler
6. Ac
L]

i

async Task<int> AccessTheWebAsync()

Httpflient client = new HttpClient():

@

laskestring> get3tringlask = client.GetStringhsync(“http://msdn.microsoft.com™);
; T

——

DalndependentWark();

-
—&
string urlContents ? aw'ait getstringlask;

return uriCoentents.Length;

e,

-

vald DolndependentWork()

i
resultsTextBox.Text += “Working vrwvm'
1 (Eb
="
=+ Task=string> HttpClient.GetStringAsyncistring url}) —{E}—

Ly
+— pNormal processing e

1— Yielding control to caller at an await

= Resuming a suspended process

» http://msdn.microsoft.com/en-

us/library/vstudio/hh191443.aspx#BKMK_WhatHappensUnderstandingan
AsyncMethod

HoGent

Dia 125

6. Asynchronous

> Synchroon public ActionResult Index()

{
IList<Brewer> brewers = brewerRepository.GetAll();
IList<BrewerViewModel>vm =
return View(vm);

}

» Asynchroon
° Duurt even lang
o Maar de server kan intussen andere requests bedienen

Meer op public async Task<ActionResult> Index()
http://msdn.microsoft.c {

om/en-

us/library/ee728598(VsS. IList<Brewer> brewers= await
100).aspx en brewerRepository.FindAllAsync();

http://www.asp.net/mvc IList<BrewerViewModel> vm =
/tutorials/mvc-4/using-

asynchronous-methods- return View(vm);
in-aspnet-mvc-4 } Dia 126

http://msdn.microsoft.com/en-us/library/ee728598(VS.100).aspx
http://www.asp.net/mvc/tutorials/mvc-4/using-asynchronous-methods-in-aspnet-mvc-4

THE

BEERHALL

3rd party logins

7. Authenticatie: Openid en OAuth

» Authenticatie via externe sites (Facebook, Twitter, ...)
» Meer op
o Openld: http://openid.net/
o OAuth: http://oauth.net/
o DotNetOpenAuth: http://www.dotnetopenauth.net/
» Configuratie
o Registreer eerst je site op Facebook, Google.... => je krijgt een

key en een secret. Meer op https://github.com/aspnet-
contrib/AspNet.Security.OAuth.Providers

HoGent

Dia 128

http://openid.net/
http://oauth.net/
http://www.dotnetopenauth.net/
https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers

7. Authenticatie: Openld en OAuth

» Authenticatie via externe sites (Facebook, Twitter,...)

HoGent

Web
Application

1. Requests user sign-in

< 2. Opls o “Sign in wilh Gocgla"

3, Performs d scovery >

on Google addrass

4, Respurds wilh
-

XROS document

5. Reguests login suth

{(+OAuth token)
‘;s. Returns uscr dently

(*QAuth request token)

Google

Login
Authentication

6. Rudinucls W Guoyly

sigwin page
7. Logs In and approves
> og

P

3 party avibenticalio

8. Allows user access 10 proccted foatures

»

[continues QAuth process at step 7)

User

Dia 129

THE

BEERHALL

CSFR

REquest FDr‘gery

HoGent Dia 131

8. CSRF

public class UserProfileController : Controller

. {
} CSRF . public viewResult Edit() { return View()}; }
CrOSS_Site public ViewResult SubmitUpdate()
{
£ Get the uwser's existing profile data (implementation omitted)
RequeSt ProfileData profile = GetloggedInUserProfile();

Forger‘y S Update the user object

profile.EmailAddress = Request.Form["email"];
profile.FavoriteHobby = Request.Form["hobby"];
SavelserProfile(profile);

ViewData["message"] = "Your profile was updated."”;
return View();

o Op andere site

<body onload="document.getElementById{ fml").submit{)">
<form id="fml" action="http://yoursite/UserProfile/SubmitUpdate"” method="post":»
<input name="email" value="hacker@somewhere.evil"” />
<input name="hobby" value="Defacing websites" />
<fform:

</body>»

HoGent

Dia 132

8. CSRF

» 2 manieren om te stoppen
 Referer header moet naar jouw domein verwijzen
* Plaats user-specific token in een hidden field in een formulier

» Wanneer je gebruik maakt van de form tag helper wordt
automatisch een hidden *__RequestVerificationToken’
geplaatst in de form

¥ <form method="post" action="/Brewer/Edit/1" novalidate="novalidate

P odiv class="wvalidation-summary-valid"” data-valmsg-summary="true">.</div
input type="hidden" data-val="true" data-val-required="The BrewerId field is required.
id="BrewerId” name="BrewerId” value="1

P :div class="form-group”:.</div

P :div class="form-group”>..</div

P :div class="form-group”>..</div

*odiv class="form-group”».</div

P :div class="form-group”:.</div

P :div class="form-group”>..</div

P :div class="form-group”>..</div

b odiveag/div
input name="__ RequestVerificationToken"” type="hidden" wvalue=
"CfDIBOIHYFYge@dPrEQE92DFCDIiVIHIZQ7VyvY sXH339DI5ANAZY fUugeAD-
NYXCETa¥Yn2AZhIN1uFIQvSE@yn4FcCallQaNsSnOpY2tGeEY _StesrL jFBvUFRMpRQyUMSKEI zkpPREWXkwgsX_zKj
Bx4L6BpbgtpCTNXZZ c46opukyY rwlZBV3kkIZbxAeZzrI8dhA

fform

HoGent Dia 133

8. CSRF

» In Controller: HttpPost
- plaats filter [ValidateAntiForgeryToken] boven HttpPost methode

HoGent

incoming request bevat een cookie __RequestVerificationToken

incoming request heeft een Request.Form
entry __ RequestVerificationToken

beide moeten matchen

indien deze niet overeenkomen krijg je een authorization failure: “A
required anti-forgery token was not supplied or was invalid”.

[ValidateAntiForgeryToken]
[HttpPost]
public IActionResult Edit(EditViewModel brewerEditViewModel) {

}

Je kan dit attribuut ook boven de controller plaatsen maar dan werk je
te restrictief op HttpGet methodes

Dia 134

8. CSRF

» In Controller: HttpPost

- filter [AutoValidateAntiforgeryToken]
* HttpPost acties zijn automatisch beveiligd
 Er zijn geen tokens nodig voor de HttpGet requests

HoGent Dia 135

Appendix: Security

®

THE

BEERHALL

hashing

HoGent

Appendix : Hashing

HoGent

Appendix Hashing

» ldentity Framework bevat klasse PasswordHasher

(gebruikt PBKDF2 with HMAC-SHA1, 128-bit salt, 256-
bit subkey, 1000 iterations)

PasswordHasher hasher = new PasswordHasher();
string = hasher.HashPassword("password"); ‘

» voor meer info zie https://docs.microsoft.com/en-

us/aspnet/core/security/data-protection/consumer-
apis/password-hashing

» Meer info over cryprographic hashing :
https://crackstation.net/hashing-security.htm

HoGent

Dia 138

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/consumer-apis/password-hashing
https://crackstation.net/hashing-security.htm

THE

BEERHALL

Referenties

» Pro ASP.NET Core MVC: Sixth edition by Adam Freeman - Apress - ISBN-13 (pbk): 978-1-
4842-0398-9 ISBN-13 (electronic): 978-1-4842-0397-2

» Microsoft docs
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity

» PluralSight — ASP.NET Core Fundamentals — Scott Allen — see Chapter ASP.NET Identity
https://app.pluralsight.com/library/courses/aspdotnet-core-fundamentals/table-of-
contents

» PluralSight — ASP.NET Core Fundamentals — Scott Allen — see Chapter ASP.NET Identity
https://app.pluralsight.com/library/courses/aspdotnet-core-fundamentals/table-of-
contents

» .NET Web Development and Tools — Get Started with ASP.NET Core Authorization — Part
1of2
https://blogs.msdn.microsoft.com/webdev/2016/03/15/get-started-with-asp-net-core-
authorization-part-1-of-2/

» .NET Web Development and Tools — Get Started with ASP.NET Core Authorization — Part
2of 2
https://blogs.msdn.microsoft.com/webdev/2016/03/23/get-started-with-asp-net-core-
authorization-part-2-of-2/

» Binary Intellect site — Implement Security Using ASP.NET Core Identity in 10 easy steps
http://www.binaryintellect.net/articles/b957238b-e2dd-4401-bfd7-f0b8d984786d.aspx

HoGent Dia 140

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://app.pluralsight.com/library/courses/aspdotnet-core-fundamentals/table-of-contents
https://app.pluralsight.com/library/courses/aspdotnet-core-fundamentals/table-of-contents
https://blogs.msdn.microsoft.com/webdev/2016/03/15/get-started-with-asp-net-core-authorization-part-1-of-2/
https://blogs.msdn.microsoft.com/webdev/2016/03/23/get-started-with-asp-net-core-authorization-part-2-of-2/
http://www.binaryintellect.net/articles/b957238b-e2dd-4401-bfd7-f0b8d984786d.aspx

