
https://github.com/WebIII/09thBeerhallVal.git
https://github.com/WebIII/09thBeerhallAuth.git
https://github.com/WebIII/09thBeerhallVal.git
https://github.com/WebIII/09thBeerhallAuth.git

1. Inleiding

2. Display/Edit annotaties

3. Validatie

4. Authenticatie

5. Authorisatie

6. async en await

7. OAuth en OpenId

8. CSRF: Cross-Site Request Forgery

9. Appendix: Hashing

10. Referenties

Dia 2

 We breiden de Beerhall applicatie verder uit
◦ Display/Edit annotaties

◦ Validatie

◦ Authenticatie en authorisatie

 Authenticatie: Gebruiker moet aanmelden en wordt al dan niet
geauthenticeerd

 Authorisatie: éénmaal de gebruiker geauthenticeerd is, krijgt de
gebruiker bepaalde rechten in de applicatie afhankelijk van zijn
rol/claims.

◦ Opmerking: er werden een aantal extra properties aan
BrewerEditViewModel toegevoegd…

Dia 3

Validatie

 Validatie in MVC kan gebeuren aan de hand van
annotaties. De annotaties brengen we 1 keer aan in
ons model (of viewmodel) en worden dan gebruikt
voor én client side validatie én server side validatie…
◦ de annotaties zijn voorgedefinieerde attributen

◦ we zullen eerst enkele annotaties bespreken die niet
gebruikt worden voor validatie

Dia 5

 System.ComponentModel.DataAnnotations
◦ voorziet in attribuut klassen die toelaten meta-data te

definiëren voor ASP.NET MVC en ASP.NET MVC data controls

◦ voorbeeld: DisplayAttribute class

[Display(Name = "Street", Prompt = "Street and house number")]

public string Street {

get; set;

}
gebruik van het Display attribuut in de klasse

BrewerEditViewModel

gebruik van het attribuut: de naam van de
klasse zonder “Attribute”

instellen van properties van de klasse adhv
benoemde parameters

<div class="form-group">

<label asp-for="Street"></label>

<input asp-for="Street" class="form-control" />

</div> Edit.cshtml

<div class="form-group">

<label for="Street">Street</label>

<input class="form-control" type="text" id="Street" name="Street" placeholder= "Street and house number" value=""
/>

</div>
broncode Brewer/Create

de tag helpers gebruiken
de meta-data om de

volgende HTML te
genereren

Dia 6

 System.ComponentModel.DataAnnotations
◦ maak gebruik van de Object Browser om in

detail te zien wat er voorzien is in klassen…

Dia 7

 System.ComponentModel.DataAnnotations vervolg
◦ voorbeeld 2: DataTypeAttribute

 laat toe een meer specifiek type te selecteren; vertelt iets over
de semantiek van de property, dit wordt door browser gebruikt

gebruik van het DataType attribuut in de klasse
BrewerEditViewModel

browser maakt gebruik van de opgegeven types
(bekijk het type attribuut van de input
elementen in de HTML broncode…)

[DataType(DataType.Currency)]

public int? Turnover {

get; set;

}

[Display(Name = “Email address")]

[DataType(DataType.EmailAddress)]

public string ContactEmail {

get; set;

}

[Display(Name = “Date established")]

[DataType(DataType.Date)]

public DateTime? DateEstablished {

get; set;

}

Dia 8

 System.ComponentModel.DataAnnotations vervolg
◦ voorbeeld 2: DataTypeAttribute, de enum DataType

Dia 9

 Extra
◦ enkele annotations vinden we in andere namespaces

 voorbeeld: HiddenInputAttribute

◦ je kan meertaligheid in je applicatie inbouwen

 zie https://docs.microsoft.com/en-us/aspnet/core/fundamentals/localization

public class BrewerEditViewModel {

[HiddenInput]

public int BrewerId {

get; set;

}

…

Dia 10

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/localization

 Merk op: DataType zorgt niet voor client- of server side
validatie, maar
◦ zorgt dat de browser HTML5 features kan gebruiken

 bv. calendar control, currency symbol

◦ zorgt dat de browser per default de data zal renderen in een correct
formaat gebaseerd op je locale

◦ zorgt dat MVC het juiste field template kan kiezen

 Indien we robuuste validatie willen inbouwen in onze
applicatie zijn er ook annotaties die we hiervoor kunnen
gebruiken…
◦ MVC genereert dan de nodige JavaScript code voor de controle aan

de client side,
◦ bovendien gebeurt de controle ook door de Model Binders aan de

server side. Dit heeft als voordeel dat de validatie ook werkt als de
gebruiker javascript disabled in de browser

Dia 11

commit Add Display and Datatype
annotations

 We hebben reeds data validatie in onze applicatie
◦ Domein (via code)

◦ Database (null, not null, constraints)

 Deze validatie wordt pas aan de server side
uitgevoerd…

 In web applicaties is het aangewezen de validatie ook
op de client te doen, zodat een round-trip naar de
server niet nodig is

Dia 12

 System.ComponentModel.DataAnnotations
◦ enkele handige validatie attributen

Dia 13

 [Required]
◦ geeft aan dat een veld verplicht in te vullen is

◦ er wordt een foutmelding getoond wanneer het veld niet is
ingevuld, we kunnen zelf bepalen welke foutmelding getoond
wordt…

◦ [Required]

 default foutmelding: “The <prop-name> field is required”

◦ [Required(ErrorMessage=“Dit veld is verplicht”)]

 foutmelding zoals in de string

◦ [Required(ErrorMessage=“{0} is verplicht”)] :

 foutmelding zoals in de string met {0} vervangen door de DisplayName van de
property.

◦ [Required(AllowEmptyStrings = false)]

 al dan niet toelaten van lege strings

Dia 14

 [Range]
◦ geeft aan dat een property een waarde moet aannemen die in

een specifiek interval ligt

◦ het bereik is inclusief de opgegeven grenzen

◦ zonder type specificatie werkt Range op int en op double
 [Range(0, 20)]

 [Range(0.00, 49.99)]

◦ voor andere types moet je expliciet het type opgeven, de
grenzen geef je dan als strings mee
 [Range(typeof(decimal), "0.00", "49.99"]

 [Range(typeof(bool), "true", "true", ErrorMessage = "You
must accept the terms")]

de gebruiker moet de ‘Accept terms’
checkbox aanvinken…

Dia 15

 [StringLength]
◦ bij deze annotatie kan je ook een minimum lengte vermelden

 [StringLength(160, MinimumLength=10)]

 [Compare]
◦ 2 properties die dezelfde waarde moeten hebben.

◦ voorbeeld: property ConfirmationPassword moet dezelfde waarde
bevatten als de property Password

 [Compare(“Password”, ErrorMessage=“Password and confirmation
password must match”)]

 In Microsoft.AspNetCore.Mvc namespace: [Remote]
◦ uitvoeren van client side validatie met een server callback

◦ voorbeeld: controleren of een opgegeven e-mail uniek is via een action
method IsUniqueEmail in AccountController

[Remote(“IsUniqueEmail", "Account")]

public string Email { get; set; }

public async Task<JsonResult> IsUniqueEmail(string email) {
var result = await _userManager.FindByEmailAsync(email);
return Json(result != null);

}

Dia 16

 Annotaties voor validatie in BrewerEditViewModel
public class BrewerEditViewModel {

…

[Required]

[StringLength(50, ErrorMessage = "{0} may not contain more than 50 characters")]

public string Name {

get; set;

}

public string Street {

get; set;

}

…

[DataType(DataType.Currency)]

[Range(0, int.MaxValue, ErrorMessage = "{0} may not be a negative value.")]

public int? Turnover {

get; set;

}

…

[Display(Name = "Email address")]

[DataType(DataType.EmailAddress)]

[RegularExpression(@"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}", ErrorMessage = "Email address is not valid")]

public string ContactEmail {

get; set;

}

Dia 17

 Om de validatie aan de client side te enablen moeten
we de gepaste jQuery libraries toevoegen aan de view

 jquery.js

 wordt reeds toegevoegd via _Layout.cshtml

 jquery.validate.js

 de jQuery Validation library

 zie http://docs.jquery.com/Plugins/Validation

 jquery.validate.unobstrusive.js

 adapter library voor omzetten van MVC meta data naar jquery
validate

@section scripts {

<script asp-src-include="lib/jquery-validation/dist/jquery.validate.js"></script>

<script asp-src-include="lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.js"></script>

} toegevoegd in Edit.cshtml

deze static javascript content werd bij
de creatie van de applicatie

automatisch toegevoegd in de
wwwroot-folder

Dia 18

http://docs.jquery.com/Plugins/Validation

 Aanpassen van de view
◦ gebruik validation tag helpers om aan te geven waar

foutmeldingen getoond moeten worden

 validation message tag helper: asp-validation-for

 toont foutmelding voor 1 bepaalde property

 validation summary tag helper: asp-validation-summary

 toont alle foutmeldingen

<div class="form-group">

<label asp-for="ContactEmail"></label>

<input asp-for="ContactEmail" class="form-control" />

</div>

<form asp-action="@action" method="post">

<div asp-validation-summary="All"></div>

<input type="hidden" asp-for="BrewerId" />

...

Dia 19

 Resultaat van de client side validatie…

tijdens het editeren
krijgen we directe
feedback…

als we op de Save
knop klikken wordt er
niet gepost naar de
server; de summary
verschijnt;

straks zullen we zien
dat deze summary
meer dan alleen maar
een opsomming van
de ‘property
validation errors’ kan
bevatten

commit Add client side
validation

Dia 20

◦ Bekijk de gegenereerde HTML code.

 paginabron weergeven of via developer tools

◦ Elke input tag bevat attributen startend met data-. Deze
attributen zijn een feature in HTML5, maar volledig backward
compatible met alle moderne browsers (including IE6).

 data-val = true: geeft aan dat deze input tag validatie nodig heeft,
en deze wordt dan uitgevoerd door jquery validate

Dia 21

 De attributen

 deze attributen worden door jquery.validate.unobstrusive
vertaald naar jquery validate.

Dia 22

 De attributen

De annotaties worden vertaald naar
data-val-xxx attributen

[Range(0, int.MaxValue, ErrorMessage = "{0} may not be a negative value")]

public int? Turnover {

get; set;

}

Dia 23

 ValidationSummary
◦ creëert placeholder voor renderen van alle validatiefouten.

Rendert alle fouten in een lijst

<div asp-validation-summary="All"></div>

Na klik op de knop Save worden de
fouten getoond…

Dia 24

 Beheer van de client side
libraries gebeurt via de library manager
◦ zie https://docs.microsoft.com/en-us/aspnet/core/client-

side/libman/libman-vs?view=aspnetcore-3.0

Dia 26

https://docs.microsoft.com/en-us/aspnet/core/client-side/libman/libman-vs?view=aspnetcore-3.0

 De annotaties aangebracht in het ViewModel zullen we
ook gebruiken om server-side validation te doen
◦ tijdens model binding gebeurt er validatie adhv de annotaties

◦ in de ModelState property van de Controller klasse wordt
informatie over de binding bijgehouden

 deze property is van het type ModelStateDictionary

 via de property IsValid kunnen we te weten komen of er validatie
fouten zijn

Dia 27

 De Controller
◦ indien bij de HttpPost ModelState errors zijn gaan we het formulier

opnieuw presenteren zodat de gebruiker fouten kan verbeteren

[HttpPost]

public IActionResult Create(EditViewModel brewerEditViewModel) {

if (ModelState.IsValid) {

try {

Brewer brewer = new Brewer();

MapBrewerEditViewModelToBrewer(brewerEditViewModel, brewer);

_brewerRepository.Add(brewer);

_brewerRepository.SaveChanges();

TempData["message"] = $"You successfully added brewer {brewer.Name}.";

}

catch (Exception e) {

TempData["error"] = $"Sorry, er liep iets fout, brouwer {brewer?.Name} kon niet worden gewijzigd";

}

return RedirectToAction(nameof(Index));

}

ViewData["IsEdit"] = false;

ViewData["Locations"] = GetLocationsAsSelectList();

return View(nameof(Edit), brewerEditViewModel);

}

Als de validatie niet lukt toon dan de
Create view opnieuw. De SelectList
moet ook opnieuw worden
doorgegeven.

Als je simpelweg javascript inhoud
uitschakelt in de browser zie je hoe
belangrijk deze validatie is… Maak
gebruik van een breakpoint en
bekijk de ModelState…

De data die reeds werd ingevuld in het
formulier zal opnieuw getoond worden

Dia 28

 De Modelstate kan ons nog meer interessante
informatie aanreiken
◦ voor elke property die de model binder probeert te binden

vind je in de dictionary een entry

 key = naam property, value informatie over de binding.

Name is required…

[Required]

[StringLength(50, ErrorMessage = "{0} may not contain more than 50 characters")]

public string Name {

get; set;

}

Geen client side validatie,
javascript disabled…

Dia 29

 Model binding en de ModelState
◦ tijdens de model binding worden data annotations

gecontroleerd en wanneer een waarde niet voldoet wordt dit
geregistreerd in de ModelState

◦ tijdens model binding kunnen zich nog andere problemen
voordoen

 bv. de string “appel” wordt doorgegeven voor een DateTime
property

 de model binder gaat geen exceptions werpen maar dit
registreren in de ModelState

 zoals je kon zien op vorige slide wordt de “attempted value” steeds
bijgehouden

Dia 30

 De View en de ModelState
◦ de tag helpers ValidationMessageFor en ValidationSummary

geven de fouten uit de ModelState weer.

 het resultaat is identiek aan de client side validatie

Dia 31

 De ModelState
◦ we kunnen ook zelf errors toevoegen aan de ModelState

◦ de key kan de naam van een property bevatten

 dit is een error op property niveau, en zal ook zo opgepikt
worden door de taghelper validation-message-for

◦ wanneer we de key leeg laten dan voegen we een error toe op
model niveau

 dit is een error die niet gelinkt is aan een specifieke property

 deze error wordt enkel getoond in de validation summary

Dia 32

 In de view kunnen we aangeven welke errors in de
validation summary moeten worden getoond

<div asp-validation-summary="All"></div>

<div asp-validation-summary="ModelOnly"></div>

<div asp-validation-summary="None"></div>

én property errors én
model errors

enkel model errors

geen errors

Dia 33

 voorbeeld: ipv TempData te gebruiken wanneer er
exceptions in het domein geworpen worden kunnen
we een model error toevoegen aan de modelstate en
het formulier opnieuw aanbieden

[HttpPost]

public IActionResult Create(BrewerEditViewModel brewerEditViewModel) {

if (ModelState.IsValid) {

try {

Brewer brewer = new Brewer();

MapBrewerEditViewModelToBrewer(brewerEditViewModel, brewer);

_brewerRepository.Add(brewer);

_brewerRepository.SaveChanges();

TempData["message"] = $"You successfully added brewer {brewer.Name}.";

return RedirectToAction(nameof(Index));

}

catch (Exception e) {

ModelState.AddModelError("", e.Message);

}

}

ViewData["IsEdit"] = false;

ViewData["Locations"] = GetLocationsAsSelectList();

return View(nameof(Edit), brewerEditViewModel);

}

in combinatie met een ModelOnly validation summary zullen
we nu geen herhaling krijgen van property level errors in de
summary

Dia 34

[Fact]

public void Create_ModelStateErrors_DoesNotCreateNorPersistsBrewerAndPassesViewModelAndViewDataToEditView()
{

_locationRepository.Setup(m => m.GetAll()).Returns(_dummyContext.Locations);

_brewerRepository.Setup(m => m.GetBy(1)).Returns(_dummyContext.Bavik);

BrewerEditViewModel brewerEvm = new BrewerEditViewModel(_dummyContext.Bavik);

_controller.ModelState.AddModelError("", "Error message");

var result = Assert.IsType<ViewResult>(_controller.Create(brewerEvm));

Assert.Equal("Edit", result.ViewName);

Assert.Equal(brewerEvm, result.Model);

var locations = Assert.IsType<SelectList>(result.ViewData["Locations"]);

Assert.Equal(3, locations.Count());

var isEdit = Assert.IsType<bool>(result.ViewData["IsEdit"]);

Assert.False(isEdit);

_brewerRepository.Verify(m => m.Add(It.IsAny<Brewer>()), Times.Never());

_brewerRepository.Verify(m => m.SaveChanges(), Times.Never());

}

 We kunnen dit ook gebruiken voor onze unit testen…
◦ bij unit testen gebeurt er geen model binding

◦ door zelf errors aan de ModelState toe te voegen kunnen we wel testen
of de server side validatie correct verloopt

◦ voorbeeld: simulatie van ModelState errors

Dia 35

 Ook de HttpGet methodes voor Edit en Delete kunnen we robuuster
maken en gepast reageren als een brewer niet gevonden wordt…
◦ gebruik maken van Tempdata[“ErrorMessage”] en redirecten naar de Index, of
◦ een NotFound() retourneren

 dit retourneert een NotFoundResult
 je kan de middleware configureren om gepast op de NotFound te reageren

 simpelste vorm: UseStatusCodePages()

 zie ook https://docs.microsoft.com/en-us/aspnet/core/fundamentals/error-
handling#configuring-status-code-pages

public void Configure(…) {
…
app.UseStaticFiles();
app.UseStatusCodePages();
app.UseSession();
…

}

public IActionResult Edit(int id) {

Brewer brewer = _brewerRepository.GetBy(id);

if (brewer == null)

return NotFound();

ViewData["Locations"] = GetLocationsAsSelectList(brewer.Location?.PostalCode);

return View(new BrewerEditViewModel(brewer));

}

Dia 36

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/error-handling#configuring-status-code-pages

 We kunnen ook unit testen indien de controller bij
HttpGet een NotFoundResult retourneert indien een
onbestaande brouwer wordt opgevraagd

[Fact]

public void Delete_UnknownBrewer_ReturnsNotFound()

{

_brewerRepository.Setup(m => m.GetBy(1)).Returns((Brewer)null);

IActionResult action = _controller.Delete(1);

Assert.IsType<NotFoundResult>(action);

}

commit Add server side validation and extend unit tests

Dia 37

 Oefening:
◦ Server side validatie voor Edit

◦ Extra unit testen voor Edit

Dia 38

ASP.NET CORE

Individual
User

Accounts

 Beveiliging?
◦ Authenticatie (verificatie): wie is de gebruiker en heeft hij/zij

toegang tot de applicatie? Gebruiker geeft identificatie in en deze
wordt gevalideerd. Mogelijkheden binnen ASP.NET:
 Individual User Accounts: op formulieren gebaseerde verificatie met

cookieondersteuning. Gebruiker heeft identiteit in, in aanlog formulier,
en na verificatie wordt een geëncrypteerd authenticatie cookie
gegenereerd. Niet geverifieerde verzoeken worden automatisch
omgeleid naar een aanlog formulier.

 OAuth en OpenID: externe login via 3th party (Facebook, …)

 Organizational accounts: single-sign-on voor bedienden en business
partners via Active Directory, Azure Active Directory of Office 365

 Windows authenticatie: voor Intranet. Single Sign on via Active Directory

◦ Authorisatie: o.b.v. de identificatiegegevens van gebruiker wordt
nagegaan wat een gebruiker mag doen binnen de applicatie. Kan
worden toegekend per gebruiker of per rol.

Dia 40

Client requests page

Authorized

Not
Authenticated

Authenticated

Logon Page
(Users enter
their credentials)

Authenticated

Authentication
Cookie

Authorized

Not
Authenticated

Access Denied

Requested
Secure Page





IIS

Username

Password

Someone

Submit

1 2

3

46

5
7

Authentication
Cookie

Dia 41

 Welcome to ASP.NET Core Identity

Dia 42

 Identity Framework
◦ API met klassen en interfaces voor het beheren

van gebruikers, rollen en claims voor een ASP.NET
web applicatie en authenticeren van gebruikers.
 Administratief beheer van User Accounts, Rollen, Claims
 Support voor cookie based authenticatie, 2-Factor Authenticatie via

email of SMS messaging, claim based authenticatie, role based
authorisatie

 Support voor Social log-ins
 …

◦ Namespace Microsoft.AspNetCore.Identity

◦ We bekijken de klassen die een project met “Individual User
Account authentication” bevat: de Models, Views, Controllers, en
andere componenten nodig voor de basis authenticatie/authorisatie

◦ https://docs.microsoft.com/en-
us/aspnet/core/security/authentication/identity?tabs=visual-
studio%2Caspnetcore2x

Dia 43

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?tabs=visual-studio,aspnetcore2x

 Twee belangrijke abstracties worden gebruikt in
Identity

Managers are high-level classes
which an application developer
uses to perform operations,
such as creating a user, in the
ASP.NET Identity system.

Stores are lower-level classes
that specify how entities, such as
users and roles, are persisted.
Stores are closely coupled with
the persistence mechanism, but
managers are decoupled from
stores which means you can
replace the persistence
mechanism without disrupting
the entire application.

Dia 44

 De architectuur

e.g. ApplicationDbContext

Dia 45

 De data die Identity Framework gebruikt bevat o.a.

Dia 46

 Project met authenticatie – Individual User Accounts
◦ instelling bij selectie template tijdens aanmaken van de applicatie

Dia 47

 Een blik op een verse MVC Web applicatie met
Individual User Accounts authenticatie
◦ de nuget package Microsoft.EntityFrameworkCore.Tools

 laat toe om met migrations te werken

Dia 48

 Een blik op een verse Web applicatie met Individual
User Accounts authenticatie
◦ de nuget packages

deze package zorgt ervoor dat we kunnen werken
met Entity Framework zodat we gebruik zullen
kunnen maken van een SQL Server DB om gegevens
van gebruikers, rollen, … op te slaan.

Dia 49

dit is de defaut razor pages buiklt-in UI voor Identity

laat toe om met DB migrations te werken

 Een blik op een verse Web applicatie met IUA
authenticatie

slechts 1 bestand!?

hier wordt aangegeven welk Layout page
gebruikt wordt voor Identity,

al de rest zit in de nuget package Identity.UI

Dia 50

Identity maakt gebruik van
razor pages

 Een blik op een MVC Web applicatie met Individual
User Accounts authenticatie
◦ enkele gewijzigde klassen

Er is een ApplicationDbContext aanwezig en een eerste migratie die het aanmaken van de DB
tabellen voor Identity bevat…

Dia 51

 Een blik op een MVC Web applicatie met Individual
User Accounts authenticatie
◦ de ApplicationDbContext erft van IdentityDbContext

◦ het type user voor Identity is impliciet IdentityUser

◦ straks zullen we onze mapping aan deze klasse toevoegen…

namespace Beerhall.Data

{

public class ApplicationDbContext : IdentityDbContext

{

public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)

: base(options)

{

}

}

}

Dia 52

 Een blik op een MVC Web applicatie met IUA
authenticatie – StartUp.cs
◦ Configuratie van IdentityFramework in ConfigureServices(…)

services.AddDefaultIdentity<IdentityUser>(options =>

options.SignIn.RequireConfirmedAccount = true)

.AddEntityFrameworkStores<ApplicationDbContext>();

Registratie van alle
services die Identity
framework nodig
heeft

Identity framework gebruiken met
de default ‘IdentityUser’ klasse

Voor de configuratie van o.a.
UserStore, RoleStore, ClaimStore, …

De toegangspoort tot de databank waarin
de data van users, rollen, claims, … zal
opgeslaan worden

De connectionstringis
leeg: DefaultConnection
uit de Configuration
wordt gebruikt

Dia 53

Bij registratie moet je via e-mail je nieuwe
account bevestigen, kunnen we weglaten
(en terugvallen op de default waarde: false)

 Een blik op een MVC Web applicatie met IUA
authenticatie – StartUp.cs
◦ Configuratie van IdentityFramework in Configure(…)

Authenticatie & Authorization checks gebeuren in
de MVC controllers, het verwerken van cookies en
detectie van 401 errors moeten gebeuren
vooraleer de request in het MVC framework zitten

Merk op: het is belangerijk dat UseRouting,
UseAuthentication, UseAuthorization en
UseEndpoints in deze volgore in de pipeline
voorkomen!

Dia 54

 Een blik op een MVC Web applicatie met Individual
User Accounts authenticatie
◦ de klasse IdentityUser

 de default implementatie van IdentityUser<TKey> die een string
gebruikt als primaire sleutel

◦ IdentityUser : IdentityUser<String>

IdentityUser erft volgende properties:

Identity Framework kan bijvoorbeeld bijhouden hoeveel
keer een user een niet geslaagde inlogpoging doet, en
de account desgwenst een tijd afsluiten

Essentiele properties: een unieke
UserName en een hashed version

van het paswoord

De primary key: Id

per default is de primary
key voor een user van het
type string, desgewenst
kan je dit type
veranderen in een type
die je zelf kiest…

Per default zal het email adres
van een gebruiker ook als

UserName gebruikt worden

Dia 55

 Merk op: je kan desgewenst gebruik maken van een
eigen gedefinieerde user-klasse. Je laat deze erven van
IdenityUser en kan deze dan uitbreiden met extra
properties.
◦ voorbeeld

 je moet nu in de configuratie wel aangeven dat je met jouw type user wil werken en
eveneens je ApplicationDbContext laten erven van
IdentityDbContext<ApplicationUser>

public class ApplicationUser : IdentityUser {

public string Name { get; set; }

public string FirstName { get; set; }

public string Street { get; set; }

public Location Location { get; set; }

}

Dia 56

 Een blik op een MVC Web applicatie met Individual
User Accounts authenticatie
◦ De connectionstring DefaultConnection in appsettings.json

Per default wordt
localdbserver gebruikt,
we kunnen dit nu reeds
aanpassen, ook de naam
van de DB passen we
aan…

Dia 57

 Als we het update-database commando geven kunnen
we de Identity tabellen terugvinden in de databank
◦ merk op: daar wij gebruik maken van drop-create strategie

gaan we verder in deze cursus geen gebruik maken van
migrations

Dia 58

Bevat de properties van
IdentityUser

Bevat de rollen

voor 3rd party
auhtentication
providers (Facebook,
Twitter, Google, …)

Claims voor rollen…

Claims voor
Users…

Tokens voor
two factor
authentication

Dia 59

 Als je de applicatie runt kan je kennismaken met de
authenticatie…

Dia 60

 Als je de applicatie runt kan je kennismaken met de
authenticatie en het default gedrag van Identity…

Dia 61

 Indien we de default implementatie willen bekijken
en/of wijzigen zullen we moeten gebruik maken van
scaffolding om aan de onderliggende code te kunnen

 Identity framework is gebaseerd op Razor pages, dit is
een nieuw onderdeel van ASP.NET Core,
geïntroduceerd in ASP.NET Core 2.0

Dia 62

 Razor Pages is a new feature of ASP.NET Core that
makes coding page-focused scenarios easier and more
productive.
◦ MVVM-framework Model – View – ViewModel

 bij MVC zitten het Model en de Controller actions niet bij de View
zelf, de code zit verspreid

 een razor page bevat bij de View ook het Model en de Controller
actions, alle verantwoordelijkheden van de pagina zitten samen

Dia 63

Dia 64

 In een notendop:
◦ alle razor pages worden in een folder Pages geplaatst

 de plaats van de razor page in de folder Pages of een subfolder
hiervan bepaalt de overeenkomstige URL die leidt naar deze
pagina

 per default zoekt de runtime naar razor pages in deze map

 Index is de default pagina wanneer de url geen pagina bevat

 voorbeeld

Dia 65

 In een notendop:
◦ de View

 .cshtml bestand die op de eerste lijn de directive @page bevat

 via de @page geef je aan dat dit een razor-page is

 een razor page handelt requests direct af, de requests passeren dus
geen controller

 gebruik @model om een model te specifiëren die je kan
gebruiken in de razor page

 het model wordt geïmplementeerd in een .cshtml.cs bestand

Dia 66

 In een notendop:
◦ het Model

 .cshtml.cs bestand

 het bestand noemt <PageName>Model en leeft in dezelfde
namespace als de View

 via deze klasse scheidt je de logica van de presentatie

 bevat

 page handlers voor requests die naar de pagina worden gestuurd

 data nodig om de pagina te renderen

 gebruik DI om dependencies te injecteren en deze klasse unit
testbaar te maken

Dia 67

 In een notendop:
◦ het Model (vervolg)

 je definieert in deze klasse de handler methods

 typische handlers:

 OnGet – initializeer de toestand om de pagina te kunnen presenteren

 OnPost – afhandeling van form submits

 maak gebruik van de optionele suffix Async voor assynchrone
functies

 maak gebruik van client/server side validatie attributen in deze
klasse

Dia 68

 voorbeeld: implementatie van Register
◦ laat toe dat een nieuwe gebruiker zich registreert

◦ indien we de code voor register willen bekijken/aanpassen
moeten we gebruik maken van scaffolding

Dia 69

Dia 70

Hier geef je aan welke de
DbContext klasse is die
gebruikt wordt

Selecteer hier de
onderdelen die je wenst
te wijzigen

Dia 71

het page model gebruikt
door de razor page

de razor page

 Registratie van een nieuwe user: Register
◦ Via constructor injectie worden een aantal essentiële services,

Managers, van Identity Framework beschikbaar in het page
model Register.cshtml.cs

public class RegisterModel : PageModel

{

private readonly SignInManager<IdentityUser> _signInManager;

private readonly UserManager<IdentityUser> _userManager;

private readonly ILogger<RegisterModel> _logger;

private readonly IEmailSender _emailSender;

public RegisterModel(

UserManager<IdentityUser> userManager,

SignInManager<IdentityUser> signInManager,

ILogger<RegisterModel> logger,

IEmailSender emailSender)

{

_userManager = userManager;

_signInManager = signInManager;

_logger = logger;

_emailSender = emailSender;

}

Dia 72

 Registratie van een nieuwe user: Register HttpGet
◦ Register.cshtml.cs - OnGet

◦ Register.cshtml.cs - InputModel

public async Task OnGetAsync(string returnUrl = null)

{

ReturnUrl = returnUrl;

ExternalLogins = (await
_signInManager.GetExternalAuthenticationSchemesAsync()).ToList();

}

in MVC komt dit
overeen met een
HttpGet action
method Register in
een controller
genaamd Account

Dia 73

de returnUrl wordt
aangeleverd via
model binding; na
een succesvolle
registratie zal je
terug gestuurd
worden naar de
pagina vanwaar de
registratie werd
aangeroepen

public class InputModel

{

[Required]

[EmailAddress]

[Display(Name = "Email")]

public string Email { get; set; }

[Required]

[StringLength(100, ErrorMessage = "The {0} must be at least {2} and at max {1} characters
long.", MinimumLength = 6)]

[DataType(DataType.Password)]

[Display(Name = "Password")]

public string Password { get; set; }

[DataType(DataType.Password)]

[Display(Name = "Confirm password")]

[Compare("Password", ErrorMessage = "The password and confirmation password do not match.")]

public string ConfirmPassword { get; set; }

}

deze inner klasse
bevat het viewmodel
met de validatie
attributen

[BindProperty]

public InputModel Input { get; set; }

via het [BindProperty] attribuut
wordt aangegeven dat de
publieke property Input moet
worden gebruikt tijdens model
binding

@page

@model RegisterModel

@{

ViewData["Title"] = "Register";

}

<h2>@ViewData["Title"]</h2>

<div class="row">

<div class="col-md-4">

<form asp-route-returnUrl="@Model.ReturnUrl" method="post">

<h4>Create a new account.</h4>

<hr />

<div asp-validation-summary="All" class="text-danger"></div>

<div class="form-group">

<label asp-for="Input.Email"></label>

<input asp-for="Input.Email" class="form-control" />

</div>

<div class="form-group">

… some code ommitted here …

<button type="submit" class="btn btn-default">Register</button>

</form>

</div>

</div>

@section Scripts {

<partial name="_ValidationScriptsPartial" />

}

 Registratie van een nieuwe user: Register HttpGet
◦ Register.cshtml

invoegen van JQuery validation via een partial view op een async manier (uitleg later)

Dia 74

dit is een razor page

de page maakt gebruik van RegisterModel

via model binding zal de ingevoerde waarde
gekoppeld worden aan Input.Email die deel

uitmaakt van RegisterModel

 Registratie van een nieuwe user: Register - HttpPost
◦ Register.cshtml.cs - OnPostAsync

public async Task<IActionResult> OnPostAsync(string returnUrl = null)

{

returnUrl = returnUrl ?? Url.Content("~/");

ExternalLogins = (await _signInManager.GetExternalAuthenticationSchemesAsync()).ToList();

if (ModelState.IsValid)

{

var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };

var result = await _userManager.CreateAsync(user, Input.Password);

if (result.Succeeded)

{

_logger.LogInformation("User created a new account with password.");

// some code omitted here

{

await _signInManager.SignInAsync(user, isPersistent: false);

return LocalRedirect(returnUrl);

}

}

foreach (var error in result.Errors)

{

ModelState.AddModelError(string.Empty, error.Description);

}

}

// If we got this far, something failed, redisplay form

return Page();

} Dia 75

Bij een geldige ModelState wordt eerst een IdentityUser object aangemaakt, de nodige properties krijgen hun waarde
via de Input-property die via model binding een invulling kreeg

Merk op:

- de property UserName krijgt de waarde van e-mail

- het paswoord van een identityUser kunnen we niet instellen, het wordt enkel in gehashte vorm bijgehouden

 Registratie van een nieuwe user: Register - HttpPost
◦ Register.cshtml.cs - OnPostAsync

public async Task<IActionResult> OnPostAsync(string returnUrl = null)

{

returnUrl = returnUrl ?? Url.Content("~/");

if (ModelState.IsValid) {

var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };

var result = await _userManager.CreateAsync(user, Input.Password);

if (result.Succeeded) {

// some code omitted here// If we got this far, something failed, redisplay form

return Page();

}

Dia 76

OnPostAsync is een asynchrone methode! Asynchrone methodes worden verderop toegelicht.

Belangrijk:

- maak steeds gebruik van await bij een aanroep naar een asynchrone methode

- wanneer je await gebruikt in een methode dan moet je de methode async declareren en moet die
methode een Task<ReturnType> retourneren (de runtime weet hoe het hiermee verder kan werken…)

De UserManager wordt gebruikt om een volwaardige Idenity user te creëren. De user heeft gegarandeerd een unieke UserName (~e-
mail adres) en is met het gehashte paswoord opgeslagen in de DB in de tabel AspNetUsers. Via de returnwaarde result kunnen we
achterhalen of deze operatie al dan niet succesvol was.

 Registratie van een nieuwe user: Register - HttpPost
◦ Register.cshtml.cs - OnPostAsync

public async Task<IActionResult> OnPostAsync(string returnUrl = null)

{

returnUrl = returnUrl ?? Url.Content("~/");

ExternalLogins = (await _signInManager.GetExternalAuthenticationSchemesAsync()).ToList();

if (ModelState.IsValid)

{

var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };

var result = await _userManager.CreateAsync(user, Input.Password);

if (result.Succeeded)

{

_logger.LogInformation("User created a new account with password.");

// some code omitted here

{

await _signInManager.SignInAsync(user, isPersistent: false);

return LocalRedirect(returnUrl);

}

}

foreach (var error in result.Errors)

{

ModelState.AddModelError(string.Empty, error.Description);

}

}

// If we got this far, something failed, redisplay form

return Page();

} Dia 77

Bij een succesvolle CreateAsync operatie wordt de SignInManager gebruikt om de gecreëerde gebruiker in te loggen en wordt er
geredirect naar de returnUrl. Dit is een LocalRedirect die de applicatie beschermt voor Open Redirect Attacks

De cookie wordt niet gepersisteerd, en dus verdwijnt wanneer we
de browser sluiten

 Registratie van een nieuwe user: Register - HttpPost
◦ Register.cshtml.cs - OnPostAsync

public async Task<IActionResult> OnPostAsync(string returnUrl = null)

{

returnUrl = returnUrl ?? Url.Content("~/");

ExternalLogins = (await _signInManager.GetExternalAuthenticationSchemesAsync()).ToList();

if (ModelState.IsValid)

{

var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };

var result = await _userManager.CreateAsync(user, Input.Password);

if (result.Succeeded)

{

_logger.LogInformation("User created a new account with password.");

// some code omitted here

{

await _signInManager.SignInAsync(user, isPersistent: false);

return LocalRedirect(returnUrl);

}

}

foreach (var error in result.Errors)

{

ModelState.AddModelError(string.Empty, error.Description);

}

}

// If we got this far, something failed, redisplay form

return Page();

} Dia 78een bool die aangeeft of de
creatie al dan geslaagd is

een IEnumerable van IdentyErrors
die zich eventueel voor hebben
gedaan tijdens de creatie

deze errors zullen
getoond worden
in de Validation
summary

 Register – het resultaat
◦ bij een succesvolle register vinden we de nieuwe user in de

DB, en werd een cookie aangemaakt

Deze cookie wordt nu met elke request meegestuurd en geanalyseerd in de middleware…

Dia 79

 Register [HttpPost] – het resultaat
◦ bij een onsuccesvolle register krijgen we een overzicht van de

errors

UserName (~e-mail) moet uniek zijn!
Deze error wordt herhaald. In de validation summary
kiezen we in plaats van All beter voor ModelOnly! We
kunnen dit aanpassen in Register.cshtml:

<div asp-validation-summary="ModelOnly"
class="text-danger"></div>

Blijkbaar legt Identity by default heel wat
restricties op wachtwoorden…

Dia 80

 Identity werkt met default gedrag die je kan
overschrijven in de StartUp klasse. Enkele voorbeelden:
◦ Password policy

◦ User’s lockout

◦ User validation

By default is de RequiredLength = 6,
staan de boolse properties op true en
is RequiredUniqueChars = 1.

StartUp.cs

By default wordt een user na 5
verkeerde pogingen locked out voor 5
minuten; ook nieuwe gebruikers
kunnen locked out worden.

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity-
configuration?tabs=aspnetcore2x

Dia 81

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity-configuration?tabs=aspnetcore2x

 Voorbeeld configuratie in de methode
ConfigureServices van StartUp.cs

services.Configure<IdentityOptions>(options =>

{

// Password settings

options.Password.RequiredLength = 8;

options.Password.RequireNonAlphanumeric = false;

// Lockout settings

options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(30);

// User settings

options.User.RequireUniqueEmail = true;

});

StartUp.cs Dia 82

 Logout
◦ AccountController > LogOff methode

 Logt de gebruiker uit

 Redirect naar Home

 Log in
◦ AccountController > LogIn methode

 Logt de gebruiker in via de SignInManager

 Redirect naar de Url in de Request string

 AccountController bevat ook
 ForgotPassword/ResetPassword

 VerifyCode: 2 factor authenticatie

 Externe login (via social providers)

Dia 83

Beerhall
& IUA template

 We gaan onze Beerhall integreren in de application
template gebaseerd op Individual User Accounts

Dia 85

 We gaan onze Beerhall integreren in de application
gebaseerd op Individual User Accounts (vervolg)

public class ApplicationDbContext : IdentityDbContext

{

public DbSet<Brewer> Brewers { get; set; }

public DbSet<Location> Locations { get; set; }

public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)

: base(options)

{

}

protected override void OnModelCreating(ModelBuilder builder)

{

base.OnModelCreating(builder);

builder.ApplyConfiguration(new BrewerConfiguration());

builder.ApplyConfiguration(new LocationConfiguration());

builder.ApplyConfiguration(new BeerConfiguration());

...

}

}

Onze DbSets en de Mappers werden
toegevoegd aan de
ApplicationDbContext

"ConnectionStrings": {

"DefaultConnection":
"Server=.;Database=BeerhallAuth;Trusted_Connection=True;MultipleActiveResultSets=true"

}, Dia 86De databank zal BeerhallAuth noemen

Dia 87

commit Integrate Beerhall with the IUA template

 We kunnen nu onze DataInitializer methode bijwerken
en enkele IdentityUsers toevoegen tijdens de seeding
◦ in onze DataInitializer hebben we hiervoor naast de

ApplicationDbContext ook nood aan de UserManager

◦ we kunnen dit via een DI chain bewerkstelligen

 vergelijk dit met de DI chain voor de repositories

 in de BrewerController injecteren we een BrewerRepository

 in de BrewerRepository injecteren we de ApplicationDbContext

◦ we gaan de applicatie refactoren zodat dit mogelijk wordt…

Dia 88

 Stap 1
◦ in de klasse BeerhallDataInitializer injecteren we de

UserManager

public class BeerhallDataInitializer {

private readonly ApplicationDbContext _dbContext;

private readonly UserManager<IdentityUser> _userManager;

public BeerhallDataInitializer(ApplicationDbContext dbContext,

UserManager<IdentityUser> userManager) {

_dbContext = dbContext;

_userManager = userManager;

}

…

Dia 89

 Stap 2
◦ in een private async method maken we de users aan

 de methodes van Identity zijn async, de methode waarin we ze
gebruiken wordt dus eveneens async

 een async void methode retourneert een Task
private async Task InitializeUsers() {

string eMailAddress = "beermaster@hogent.be";

IdentityUser user = new IdentityUser { UserName = eMailAddress, Email = eMailAddress };

await _userManager.CreateAsync(user, "P@ssword1");

eMailAddress = "jan@hogent.be";

user = new IdentityUser { UserName = eMailAddress, Email = eMailAddress };

await _userManager.CreateAsync(user, "P@ssword1");

}

Dia 90

 Stap 2 - vervolg
◦ in de DataInitializer roepen we de methode InitializeUsers aan

 de DataInitializer wordt dus ook een async methode

 de aanroep wordt voorafgegaan door await

public async Task InitializeData() {

_dbContext.Database.EnsureDeleted();

if (_dbContext.Database.EnsureCreated()) {

await InitializeUsers();

Location bavikhove = new Location { Name = "Bavikhove", PostalCode = "8531" };

…

Dia 91

 Stap 3
◦ In de StartUp klasse moeten we nu de aanroep naar

InitializeData aanpassen want dit is nu een async methode

 merk op: de Configure methode zelf kunnen we niet async maken,
dit is een methode van het framework

 via Wait() kunnen we wel aangeven dat we hier zullen wachten
tot de geretourneerde Task beëindigd is

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
BeerhallDataInitializer beerhallDataInitializer) {

…

beerhallDataInitializer.InitializeData().Wait();

}

Dia 92

 Je kan de applicatie runnen en de resulterende DB
bekijken

 Je kan in/uitloggen als een van de users uit de
BeerhallDataInitializer
◦ beermaster@hogent.be of jan@hogent.be

 Je kan je als nieuwe user registreren

commit Seed IdentityUsers

Dia 93

mailto:beermaster@hogent.be
mailto:jan@hogent.be

Authorisatie

 Momenteel kan iedereen op onze site Brewers
beheren. We gaan nu zorgen dat enkel gebruikers die
geauthenticeerd zijn én administrator zijn dit kunnen…

uit Hfdstk 8…

Dia 95

 Via het AuthorizeAttribute kunnen we actions in een
controller afschermen
◦ een request zal de action(s) voorzien van dit attribuut niet

uitvoeren vooraleer een check is gebeurd
 default check: een user is ingelogd

 je kan dit uitbreiden met parameters en/of je eigen authorisatie
check bouwen

 Via het AllowAnonymousAttribute kunnen we
aangeven dat actions kunnen uitgevoerd worden
zonder authorization check

 Deze attributen zijn gedefinieerd in de namespace
Microsoft.AspNetCore.Authorization

Dia 96

namespace BeerhallMVC.Controllers {

[Authorize]

public class BrewerController : Controller {

private readonly IBrewerRepository _brewerRepository;

private readonly ILocationRepository _locationRepository;

public BrewerController(IBrewerRepository brewerRepository, ILocationRepository locationRepository) {

_brewerRepository = brewerRepository;

_locationRepository = locationRepository;

}

[AllowAnonymous]

public IActionResult Index() {

IEnumerable<Brewer> brewers = _brewerRepository.FindAll().OrderBy(b => b.Name).ToList();

ViewData["TotalTurnover"] = brewers.Sum(b => b.Turnover);

return View(brewers);

}

public IActionResult Edit(int id) {

Brewer brewer = _brewerRepository.FindBy(id);

ViewData["Locations"] = GetLocationsAsSelectList(brewer?.Location?.PostalCode);

return View(new BrewerEditViewModel(brewer));

}

[HttpPost]

public IActionResult Edit(BrewerEditViewModel brewerEditViewModel) {

if (ModelState.IsValid)

…

De toegang tot de action methods in deze
controller is nu beperkt tot ge-authenticeerde
users.

Als je dit attribuut boven de controller klasse
plaatst scherm je automatisch elke action in de
controller af. Je kan het attribuut ook specifiek
boven acties die je wil afschermen plaatsen…

Dit attribuut overschrijft het attribuut dat op de
controller werd geplaatst. Op deze manier is de
Index toch voor iedereen bereikbaar…

Dia 97

 Wanneer we nu zonder inloggen een brewer proberen
te editeren worden we omgeleid naar de login pagina.
De return-url wordt als request parameter
doorgegeven, eens we zijn ingelogd komen we op de
Edit pagina
◦ merk op dat de index nog steeds bereikbaar is voor iedereen…

commit Add Authorize and AllowAnonymous attributes
Dia 98

 Middleware en filters…

◦ een request passeert door de
middleware pipeline (zie hoofdstuk 6)

◦ eens de request in het MVC framework
komt worden enkele filters uitgevoerd
voor/tijdens/na de uitvoering van
de action method (dit noemen we de
filter pipeline)

◦ de response passeert op de weg terug
weer door de middleware pipeline

Dia 99

 Wat gebeurt precies wanneer een gebruiker niet is
ingelogd en klikt op Brewer/Edit?

de response passeert uitgaand de
Identity middleware, deze is default
geconfigureerd
◦ om 401 responses om te zetten naar

302: found response

 de redirect URL is Account/Login

 de oorspronkelijke URL wordt in de
vorm van request parameters
toegevoegd aan de redirect URL

de request passeert inkomend de
Identity middleware
◦ er wordt geen authenticatie

cookie gevonden en dus is er
geen ‘Signed In User’

de Authorize filter wordt uitgevoerd en hier wordt
vastgesteld er geen SignedInUser is, en dat er wel een
[Authorize] attribuut is…

◦ het resultaat is een 401 response: Unauthorized
Dia 100

 De filter pipeline

Authorization filters are used to
determine whether the current
user is authorized for the
request being made

Dia 101

https://docs.microsoft.com/en-us/aspnet/core/mvc/controllers/filters#authorization-filters

 De configuratie van de application’s cookie gebeurt in de
ConfigureServices methode van de StartUp klasse

Dia 102

 Configuratie Identity middleware
◦ voorbeeld

services.ConfigureApplicationCookie(options =>

{

options.Cookie.Name = "YourAppCookieName";

options.Cookie.HttpOnly = true;

options.ExpireTimeSpan = TimeSpan.FromMinutes(60);

options.LoginPath = "/Account/MyLogin";

options.LogoutPath = "/Account/Logout";

options.AccessDeniedPath = "/Account/AccessDenied";

// Requires `using Microsoft.AspNetCore.Authentication.Cookies;`

options.ReturnUrlParameter =
CookieAuthenticationDefaults.ReturnUrlParameter;

});

Bij een 401 wordt nu geredirect naar de action
method MyLogin in de AccountController…

Dia 103

 De Login – HttpPost (Login.cshtml.cs)
public async Task<IActionResult> OnPostAsync(string returnUrl = null)

{

returnUrl = returnUrl ?? Url.Content("~/");

ExternalLogins = (await _signInManager.GetExternalAuthenticationSchemesAsync()).ToList();

if (ModelState.IsValid)

{

var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };

var result = await _userManager.CreateAsync(user, Input.Password);

if (result.Succeeded)

result = await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "customer"));

if (result.Succeeded)

{

_logger.LogInformation("User created a new account with password.");

// further code omitted

Dia 104

 We kunnen de authorisatie verfijnen door gebruik te
maken van rollen en/of claims.
◦ Role based authorization

 rollen laten toe dat we groepen van gebruikers als eenzelfde gaan
beschouwen voor authorisatie

◦ Claims based authorization

 maakt gebruik van key/value pairs die iets vertellen over een
gebruiker (geboortedatum, ssn, gender, sirname, …)

 is flexibeler en krachtiger dan role based authorization

◦ We gaan claims based authorization gebruiken om het
onderscheid te maken tussen administrators en klanten

When an identity is created it may be assigned one or more claims issued by a trusted party. A claim is name value pair that represents what the subject
is, not what the subject can do. For example you may have a Drivers License, issued by a local driving license authority. Your driver's license has your date
of birth on it. In this case the claim name would be DateOfBirth, the claim value would be your date of birth, for example 8th June 1970 and the
issuer would be the driving license authority. Claims based authorization, at its simplest, checks the value of a claim and allows access to a resource based
upon that value. For example if you want access to a night club the authorization process might be:
The door security officer would evaluate the value of your date of birth claim and whether they trust the issuer (the driving license authority) before
granting you access. Dia 105

 Claims based authorisation
◦ Stap 1: een authorisatie policy definiëren

 een policy is een verzameling van condities waaraan een
user moet voldoen om toegelaten te worden tot een
bepaalde resource.

 je definieert een policy door de Authorization service te
registreren en via de options de policy te beschrijven

services.AddAuthorization(options => {

options.AddPolicy("AdminOnly", policy => policy.RequireClaim(ClaimTypes.Role, "admin"));

options.AddPolicy("Customer", policy => policy.RequireClaim(ClaimTypes.Role, "customer"));

});

in de methode ConfigureServices(…) van StartUp.cs

De Customer policy beschrijft dat de user een claim van het type ‘Role’ moet hebben en dat deze bovendien de waarde
“customer” moet hebben.

Dia 106

 Claims based authorisation
◦ de policy die we definieerden verwacht dat een bepaalde

claim aanwezig is én dat die een bepaalde waarde heeft

◦ een simpele policy verwacht gewoon de aanwezigheid van
een claim, voorbeeld
services.AddAuthorization(options => {

options.AddPolicy("HasMobile", policy => policy.RequireClaim(ClaimTypes.MobilePhone));

});

Dia 107

 Claims based authorisation
◦ de klasse ClaimTypes

Enkele voorbeelden van ClaimTypes

Dia 108

Dia 109

 Claims based authorisation
◦ Stap 2: zorgen dat de users de gepaste claims krijgen

 BeerhallDataInitializer voor users die ge-seed worden

 Register voor nieuwe users (dit worden automatisch ‘customers’)

private async Task InitializeUsers() {

string eMailAddress = "beermaster@hogent.be";

ApplicationUser user = new ApplicationUser { UserName = eMailAddress, Email = eMailAddress };

await _userManager.CreateAsync(user, "P@ssword1");

await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "admin"));

eMailAddress = "jan@hogent.be";

user = new ApplicationUser { UserName = eMailAddress, Email = eMailAddress };

await _userManager.CreateAsync(user, "P@ssword1");

await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "customer")); }

public async Task<IActionResult> OnPostAsync(string returnUrl = null) {

returnUrl = returnUrl ?? Url.Content("~/");

if (ModelState.IsValid) {

var user = new IdentityUser { UserName = Input.Email, Email = Input.Email };

var result = await _userManager.CreateAsync(user, Input.Password);

if (result.Succeeded)

result = await _userManager.AddClaimAsync(user, new Claim(ClaimTypes.Role, "customer"));

if (result.Succeeded)

{

 Claims based authorisation
◦ Stap 3: gebruik de policy samen met het Authorize attribuut

op controllers en/of action methods

Enkele voorbeelden van ClaimTypes

[Authorize(Policy = "AdminOnly")]

public class BrewerController : Controller {

private readonly IBrewerRepository _brewerRepository;

private readonly ILocationRepository _locationRepository;

public BrewerController(IBrewerRepository brewerRepository, ILocationRepository locationRepository) {

_brewerRepository = brewerRepository;

_locationRepository = locationRepository;

}

[AllowAnonymous]

public IActionResult Index() {

IEnumerable<Brewer> brewers = _brewerRepository.GetAll().OrderBy(b => b.Name).ToList();

ViewData["TotalTurnover"] = brewers.Sum(b => b.Turnover);

return View(brewers);

}

Dia 110

 Indien een gebruiker is ingelogd maar geen claims
heeft die aan de policy voldoen
◦ krijg je van MVC een 403 response: Forbidden

 per default wordt er geredirect naar Account/AccesDenied

 gebruik scaffolding van Identity om deze pagina desgewenst aan
te passen

Dia 111

 Claims based authorisation
◦ Merk op dat indien er meerdere policies op een

controller/action gebruikt worden ze allemaal moeten slagen
om toegang te verkrijgen

Enkele voorbeelden van ClaimTypes

[Authorize(Policy = "AdminOnly")]

public class BrewerController : Controller {

private readonly IBrewerRepository _brewerRepository;

private readonly ILocationRepository _locationRepository;

public BrewerController(IBrewerRepository brewerRepository, ILocationRepository locationRepository) {

_brewerRepository = brewerRepository;

_locationRepository = locationRepository;

}

[Authorize(Policy = “Customer")]

public IActionResult Index() {

IEnumerable<Brewer> brewers = _brewerRepository.GetAll().OrderBy(b => b.Name).ToList();

ViewData["TotalTurnover"] = brewers.Sum(b => b.Turnover);

return View(brewers);

}

Om nu aan de Index methode te kunnen moet je én aan de policy
AdminOnly én aan de policy Customer voldoen…

Dia 112

 Claims based authorisation
◦ Je kan meer complexe policies bouwen door zelf een custom

policy handler te implementeren

 voorbeeld: op basis van een DateOfBirth claim toegang verlenen
aan users die ouder zijn dan 21 jaar

 zie https://docs.microsoft.com/en-
us/aspnet/core/security/authorization/policies#security-
authorization-policies-based

Enkele voorbeelden van ClaimTypes Dia 113

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/policies#security-authorization-policies-based

 resultaat in DB na de seeding

commit Add claims-based authorization
Dia 114

Identity in
de Views

 De _Layout view maakt gebruik van een partial view
_LoginPartial
◦ Partial views worden in detail in volgend hoofdstuk behandeld

◦
<nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-bottom box-shadow mb-3">

<div class="container">

Beerhall

<button class="navbar-toggler" type="button" data-toggle="collapse" data-target=".navbar-collapse" aria-
controls="navbarSupportedContent"

aria-expanded="false" aria-label="Toggle navigation">

</button>

<div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">

<partial name="_LoginPartial" />

<ul class="navbar-nav flex-grow-1">

<li class="nav-item">

Home

<li class="nav-item">

Privacy

</div>

</div>

</nav>

Dia 116

 _LoginPartial
@using Microsoft.AspNetCore.Identity

@inject SignInManager<IdentityUser> SignInManager

@inject UserManager<IdentityUser> UserManager

@if (SignInManager.IsSignedIn(User))

{

<form asp-area="Identity" asp-page="/Account/Logout" asp-route-returnUrl="@Url.Action("Index", "Home", new { area = "" })"
method="post" id="logoutForm" class="navbar-right">

<ul class="nav navbar-nav navbar-right">

<a asp-area="Identity" asp-page="/Account/Manage/Index" title="Manage">Hello @UserManager.GetUserName(User)!

<button type="submit" class="btn btn-link navbar-btn navbar-link">Logout</button>

</form>

}

else

{

<ul class="nav navbar-nav navbar-right">

<a asp-area="Identity" asp-page="/Account/Register">Register

<a asp-area="Identity" asp-page="/Account/Login">Login

}

De managers worden geinjecteerd in de cshtml pagina

User is de gebruiker die momenteel is ingelogd

De Name claim van de ingelogde gebruiker wordt opgehaald

Dia 117

async

 Synchronous – Wacht op het resultaat alvorens te
returnen

 IData data = DownloadFile(…);
ProcessData(data);

 Asynchronous – Returnt onmiddellijk, zal call back
uitvoeren als resultaat ontvangen
◦ Task<IData> future = DownloadFileAsync(…);

future.ContinueWith(data => ProcessData(data));

BLOCKED!

DownloadFile ProcessData

DownloadFileAsync ProcessData

Task
representeert
een
asynchrone
operatie die in
dit voorbeeld
een IData
object zal
returnen

Dia 119

 Asynchroon programmeren – eenvoudig.
◦ “async” and “await” keywords

 Geen callbacks meer nodig

 Zorgt voor compiler magic

 Voorbeeld: registreren van een gebruiker
public async Task<IActionResult> Register(RegisterViewModel model, string returnUrl = null)

{

ViewData["ReturnUrl"] = returnUrl;

if (ModelState.IsValid)

{

var user = new ApplicationUser { UserName = model.Email, Email = model.Email };

var result = await _userManager.CreateAsync(user, model.Password);

if (result.Succeeded)

{

// For more information on how to enable account confirmation and password reset please …

await _signInManager.SignInAsync(user, isPersistent: false);

_logger.LogInformation(3, "User created a new account with password.");

return RedirectToLocal(returnUrl);

}

AddErrors(result);

}

Dia 120

 Compiler magic
◦ async keyword informeert de compiler dat het gaat om een

asynchrone methode
 Een asynchrone methode

 Conventie: Async suffix voor de methode naam (behalve in de Controller)

 Returnt steeds een Task (voor void) of Task<T> voor returntype T

 Bevat minstens 1 await

◦ await markeert een punt in de code waar met de uitvoering van de
rest van die code wordt gewacht totdat de uitvoering van de
asynchrone methode is beëindigd. Wel wordt de controle
geretourneerd naar de “caller” methode waar wordt verdergegaan
met de uitvoering van de code. De code na de await wordt
gecompileerd als een callback van de asynchrone Task(thread). De
bijhorende context (variabelen,….) wordt bijgehouden. Als de taak
beëindigd is wordt verdergegaan met de uitvoering van de rest van
de methode. Hierbij wordt gebruik gemaakt van de synchronisation
context.

Dia 121

 Open het project MultiThreading.sln

 Run de applicatie

Stap 1

Stap 2

Stap 2 gaat
verder in
aparte
thread

Stap 3

Dia 122

 Vervang DoLongTaskMethod door
DoLongTaskMethodAsync

Stap 1

Stap 2stap3

Dit wordt gecompileerd als
callback methode van de
asynchrone Task en wordt pas
uitgevoerd als de taak
beëindigd is.

Dia 123

◦ Een taak (class Task) representeert een asynchrone operatie
die een resultaat kan teruggeven. (Task retourneert void,
Task<T> retourneert T). De status van een taak kan worden
opgevraagd door de calling code. Meer over de status op
http://msdn.microsoft.com/en-
us/library/system.threading.tasks.taskstatus(v=vs.110).aspx

Running

Faulted Cancelled RanTo
Completion

Dia 124

http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskstatus(v=vs.110).aspx

 http://msdn.microsoft.com/en-
us/library/vstudio/hh191443.aspx#BKMK_WhatHappensUnderstandingan
AsyncMethod

Dia 125

 Synchroon

 Asynchroon
◦ Duurt even lang

◦ Maar de server kan intussen andere requests bedienen

public ActionResult Index()

{

IList<Brewer> brewers = brewerRepository.GetAll();

IList<BrewerViewModel> vm = ….

return View(vm);

}

public async Task<ActionResult> Index()

{

IList<Brewer> brewers= await
brewerRepository.FindAllAsync();

IList<BrewerViewModel> vm = ….

return View(vm);

}

Meer op
http://msdn.microsoft.c
om/en-
us/library/ee728598(VS.
100).aspx en
http://www.asp.net/mvc
/tutorials/mvc-4/using-
asynchronous-methods-
in-aspnet-mvc-4 Dia 126

http://msdn.microsoft.com/en-us/library/ee728598(VS.100).aspx
http://www.asp.net/mvc/tutorials/mvc-4/using-asynchronous-methods-in-aspnet-mvc-4

3rd party logins

 Authenticatie via externe sites (Facebook, Twitter, …)

 Meer op
◦ OpenId: http://openid.net/

◦ OAuth: http://oauth.net/

◦ DotNetOpenAuth: http://www.dotnetopenauth.net/

 Configuratie
◦ Registreer eerst je site op Facebook, Google…. => je krijgt een

key en een secret. Meer op https://github.com/aspnet-
contrib/AspNet.Security.OAuth.Providers

Dia 128

http://openid.net/
http://oauth.net/
http://www.dotnetopenauth.net/
https://github.com/aspnet-contrib/AspNet.Security.OAuth.Providers

 Authenticatie via externe sites (Facebook, Twitter,…)

Dia 129

CSFR

Dia 131

 CSRF :
Cross-Site
Request
Forgery

◦ Op andere site

Dia 132

 2 manieren om te stoppen
 Referer header moet naar jouw domein verwijzen

 Plaats user-specific token in een hidden field in een formulier

 Wanneer je gebruik maakt van de form tag helper wordt
automatisch een hidden ‘__RequestVerificationToken’
geplaatst in de form

Dia 133

 In Controller: HttpPost
 plaats filter [ValidateAntiForgeryToken] boven HttpPost methode

 incoming request bevat een cookie __RequestVerificationToken

 incoming request heeft een Request.Form
entry __RequestVerificationToken

 beide moeten matchen

 indien deze niet overeenkomen krijg je een authorization failure: “A
required anti-forgery token was not supplied or was invalid”.

 Je kan dit attribuut ook boven de controller plaatsen maar dan werk je
te restrictief op HttpGet methodes

[ValidateAntiForgeryToken]

[HttpPost]

public IActionResult Edit(EditViewModel brewerEditViewModel) {

…

}

Dia 134

 In Controller: HttpPost
 filter [AutoValidateAntiforgeryToken]

 HttpPost acties zijn automatisch beveiligd

 Er zijn geen tokens nodig voor de HttpGet requests

Dia 135

hashing

Dia 137

 Identity Framework bevat klasse PasswordHasher
(gebruikt PBKDF2 with HMAC-SHA1, 128-bit salt, 256-
bit subkey, 1000 iterations)

 voor meer info zie https://docs.microsoft.com/en-
us/aspnet/core/security/data-protection/consumer-
apis/password-hashing

 Meer info over cryprographic hashing :
https://crackstation.net/hashing-security.htm

Dia 138

https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/consumer-apis/password-hashing
https://crackstation.net/hashing-security.htm

 Pro ASP.NET Core MVC: Sixth edition by Adam Freeman - Apress - ISBN-13 (pbk): 978-1-
4842-0398-9 ISBN-13 (electronic): 978-1-4842-0397-2

 Microsoft docs
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity

 PluralSight – ASP.NET Core Fundamentals – Scott Allen – see Chapter ASP.NET Identity
https://app.pluralsight.com/library/courses/aspdotnet-core-fundamentals/table-of-
contents

 PluralSight – ASP.NET Core Fundamentals – Scott Allen – see Chapter ASP.NET Identity
https://app.pluralsight.com/library/courses/aspdotnet-core-fundamentals/table-of-
contents

 .NET Web Development and Tools – Get Started with ASP.NET Core Authorization – Part
1 of 2
https://blogs.msdn.microsoft.com/webdev/2016/03/15/get-started-with-asp-net-core-
authorization-part-1-of-2/

 .NET Web Development and Tools – Get Started with ASP.NET Core Authorization – Part
2 of 2
https://blogs.msdn.microsoft.com/webdev/2016/03/23/get-started-with-asp-net-core-
authorization-part-2-of-2/

 Binary Intellect site – Implement Security Using ASP.NET Core Identity in 10 easy steps
http://www.binaryintellect.net/articles/b957238b-e2dd-4401-bfd7-f0b8d984786d.aspx

Dia 140

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity
https://app.pluralsight.com/library/courses/aspdotnet-core-fundamentals/table-of-contents
https://app.pluralsight.com/library/courses/aspdotnet-core-fundamentals/table-of-contents
https://blogs.msdn.microsoft.com/webdev/2016/03/15/get-started-with-asp-net-core-authorization-part-1-of-2/
https://blogs.msdn.microsoft.com/webdev/2016/03/23/get-started-with-asp-net-core-authorization-part-2-of-2/
http://www.binaryintellect.net/articles/b957238b-e2dd-4401-bfd7-f0b8d984786d.aspx

