HoGent

BEDRIJF
EN
ORGANISATIE

Hoofdstuk 8: ASP.NET MVC Core

https://github.com/Weblll/08thBeerhallMvcCRUD.git

HoGent

Hoofdstuk 8: ASP.NET MVC Core

1. Inleiding
2. Domain Model
3. DAL : Repository pattern

4. De MVC Applicatie Bierhalle
o De Controller
o Index: Controller
° Index: View
o Index: Extra vraag van de gebruiker
o Create GET/POST: Controller
o Create GET/POST: View
o Edit GET/POST: Controller
o Edit GET/POST: View
o Delete GET/POST: Controller
o Delete GET/POST: View

5. Layouts
6. Exceptionhandlingin MVC

7. Unit testen van de Controller
o Depencency injection
o Mocking

8. Oefeningen

9. Enkele extra’s

10. Referenties

HoGent Dia 2

1. Inleiding

» Een eerste data-driven MVC applicatie

» Bedoeling

> Volledige CRUD voor brouwers
* TDD van het Domein (zoals in hoofdstuk 3)

- Controller

* Interacties met de databank gebruik makend van EF en Linqg
- Aanmaken van de Views

- Web-helpers

- Communicatie View — Controller via Viewmodels

o Unit testen van Controller: DI en Mocking

HoGent Dia 3

1. Inleiding

Beerhall

Brewers
Add a brewer

Name

Bavik

De Graal

De Leeuw
Duvel Moortgat
InBev

Palm Breweries

Roman

Home Privacy

Street

Rijksweg 33

Breendonkdorp 28

Brouwerijplein 1

Hauwaart 105

Total turnover: 20 500 000 €

Location

8531 Bavikhove

2870 Puurs

3000 Leuven

9700 Qudenaarde

Turnover

20.000.000,00 €

500.000,00 €

Date established

26/12/1990

Detail | Edit | Delete

Detail | Edit | Delete

Detail | Edit | Delete

Detail | Edit | Delete

Detail | Edit | Delete

Detail | Edit | Delete

Detail | Edit | Delete

HoGent

Dia 4

1. Inleiding

» ASP.NET MVC framework

HTTP
Request >
Response «—— View o
HTML Presentation
Model
4
HoGent

Controller

) Model

V.
N J

Usually persisted
to a relational
database,
perhaps via
repositories

--->
“---

T
\ J

Dia 5

1. Inleiding: Use case

» Use Case

Use Case : Beheer brouwers
Actor : administrator

Precondities : actor is ingelogd als administrator. Brouwer gegevens zijn beschikbaar.

Postcondities : administrator heeft gegevens brouwers bekeken, eventueel de gegevens van
een brouwer aangepast, een brouwer toegevoegd of een brouwer verwijderd.

Normale verloop:

1. Systeem geeft een overzicht van de brouwers (naam, gemeente, omzet) en de
mogelijkheid om een brouwer te editeren, te verwijderen of een nieuwe brouwer toe te
voegen

2. Herhaal
1. Administrator kiest om brouwer te editeren

2. Systeem geeft de gegevens van de brouwer weer : brouwernr, naam, straat,
postcode, gemeente, omzet

Administrator wijzigt de gegevens van de brouwer
4. Systeem valideert de gegevens en slaat deze op in de database

Systeem geeft melding dat de gegevens gewijzigd zijn

Hol

1. Inleiding: Use case

Alternatieve scenario’s :

2.1.1a Administrator wenst een brouwer te creéren
1. Systeem biedt de mogelijkheid om te gegevens in te geven : naam, straat, postcode, omzet
2. Administrator geeft de gegevens in
3. Naar2.1.4

2.3.a Administrator wenst de gegevens niet te wijzigen
1. Terug naar?2

2.3.b De administrator wenst een brouwer te verwijderen
1. Systeem vraagt om bevestiging
2. Actor bevestigt
3. Systeem verwijdert de brouwer uit de database
4. Systeem geeft melding. Terug naar 1

2.3.b.1.a. Systeem detecteert dat brouwer bieren bevat.

1. Systeem geeft melding dat de brouwer niet kan verwijderd worden zolang hij bieren heeft.
Terug naar 2

2.4.a Systeem detecteert dat niet alle gegevens correct ingevuld zijn : naam verplicht, omzet > 0 als
ingevuld.)

1. Systeem geeft melding. Terug naar 2.3

HoGent Dia 7

1. Inleiding: SSD - BrouwerController

| Bysteam
Administrator I
Index| | l
...J_
list of brewers: name, street, location, turnover, date established
total turnover
{% ________________________________
Edit{ bre werld) ._
brewer
{% ________________________________
Edit(brewerd, name, street, lecation, turnover) ..
redirect to Index
{% ________________________________
CreateBrewer() .‘
a new brewer
{'_‘; ________________________________
CreateBrewer{name, street, location, turnover, dateEstablished) .‘
redirect to Index
't‘.‘.% ________________________________
DeleteBrewer(brewerld) .‘
ask for confirmation
L
DeleteBrewerConfirmed|brewerld) -'
redirect to Index
{% ________________________________
H

i
BrewerController
Clazs

= Methods

Create() ! lActionResult

Create(BrewerEditViewModel brewerEditViewModel) : lActionresult
Delete(int id) : [&ctionResult

DeleteConfirmed(int id) : [ActionResult

Edit[BrewerEditViewhModel brewerEditViewhodel) : lActionResult
Edit{int id) : lActionResult

Index() : [ActionResult

eaeaeea

Dia 8

WELCOME | THE

1. Inleiding

» Als administrator wil ik...
Brouwers kunnen toevoegen

o]

(0]

Brouwers kunnen wijzigen

(@)

Brouwers kunnen verwijderen
Brouwers kunnen raadplegen

» Als klant wil ik...
o Alle bieren kunnen raadplegen
> Bieren kunnen toevoegen aan mijn winkelmandje
> De inhoud van mijn winkelmandje kunnen bestellen

(0]

HoGent Dia 10

1. Inleiding

» Als administrator wil ik...

» Als klant wil ik...

o Alle bieren kunnen raadplegen
o Bieren kunnen toevoegen aan mijn winkelmandje
° De inhoud van mijn winkelmandje kunnen bestellen

HoGent Dia 11

1. Inleiding

o Template: Visual C# - .NET Core

o ASP.NET Core Web Application > Web Application (Model-

View-Controller) > “Beerhall”

- Merk op in dit project gebruiken we geen authenticatie

» De start: aanmaken van een nieuw project

Create a new ASP.NET Core web application

ASP.NET Core 3.0 -

“NET Core =

Empty

An empty project template for creating an ASP.NET Core application. This template does not have any content in it.

E API

A project template for creating an ASP.NET Core application with an example Controller for a RESTful HTTP service.
This template can also be used for ASP.INET Core MVC Views and Controllers.

@1) ‘Web Application

A project template for creating an ASP.NET Core application with example ASP.NET Razor Pages content.

‘Web Application (Model-View-Controller)

A project template for creating an ASP.NET Core application with example ASP.NET Core MVC Views and
‘Controllers. This template can also be used for RESTful HTTP services.

g Angular

A project template for creating an ASP.NET Core application with Angular

React.js
A proiect template for creatina an ASP.NET Core apglication with Reactis

Get additional project templates

v

Authentication
No Authentication

Change

Advanced
Configure for HTTPS

D Enable Docker Support
(Requires Docker Desktop)

Author: Microsoft
Source: .NET Core 3.00

Back

Create

HoGent

Dia 12

THE

BEERHALL

het domein

2. Het domein

» We nemen een deel van de domeinlaag over uit H7
Entity Framework

» Klassen toevoegen in Beerhall - Models - Domain

Brewer A Beer A

Class Class
4 Fields 4 Fields
9; _name : string 0; _name : string

9; _turnover : int? 4 Properties

4 Properties) - catr 1 ?
P J Beers: Collection<Beer> & AlcoholByWolume { get; set; } : double?
F Brewerld { get; set; } :int & AlcoholKnown { get; } : bool
F ContactEmail { get; set; } : string A Beerld { get; set; } : int
& DateEstablished { get; set; } : DateTime? & Description { get; set; } : string
J* Description { get; set; } : string A Name { get; set; } : string
& Name { get; set; } : string H& Price { get; set; } : decimal
& NrOfBeers { get; } :int 4 Methods
F Street{get set }: stru_'ig ‘j-j* Beer()
K Tumnover { get; set; } :int? % Beer(string name)

4 Methods M _
@@ AddBeer{string name, [double? alcoholByVolume... Location A
@ Brewer() Class
@ Brewer(string name) ﬁ Location
@ Brewer(string name, Location location, string street) =| 4 Properties

@ DeleteBier(Beer beer) : void
@ GetBy(int beerld) : Beer
@ GetBy(string name) : Beer

F Name { get; set; } : string
HF PostalCode { get; set; } : string

HoGent Dia 14

2. Het domein

» Inspecteer de domeinklassen Brewer, Beer, Location

» Inspecteer de testklassen BrewerTest, BeerTest
° run de testen...

commit Add domain layer including unit tests

- t HTTP } Usuall;lf persiited
eques to a relationa
Controller > Model " database,

View « €--- i

Response ¢—— — perhaps via
HTML Presentation repositories
Model
4 3 E 2|

HoGent Dia 15

THE

BEERHALL

de datalaag

3. De Datalaag

» We maken gebruik van EF Core als ORM-tool.

» Installeer de nuget package
Microsoft.EntityFrameworkCore.SqlServer

4 /=7 Beerhall
& Connected Services
4 g Dependencies
b & Analyzers
b = Frameworks
4 '@ Packages

i 'Eg Microsoft.EntityFrameworkCore.5ql5erver (3.0.0)

HoGent

Dia 17

3. De Datalaag

» Stap 2 — DbContext klasse & Initializer

o ApplicationDbContext.cs
« erft van DbContext
- DbSets voor Brewer en Location

- Beer zullen we enkel via Brewer benaderen, enkel voor de aggregate

roots maken we DbSets aan
* Mappers voor Brewer, Beer en Location

Merk op

in de console applicatie in hfstk 07 werd in deze klasse de configuratie verzorgd.

deze ApplicationDbContext klasse bevat geen override voor de methode OnConfiguring, de
configuratie gebeurt nu in de StartUp klasse (zie verderop)

deze manier van werken vereist wel een constructor in onze ApplicationDbContext die de constructor
van de base klasse aanroept:

public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options) : base(options)
{

}

HoGent

A provider can be configured
by overriding the
DbContext.OnConfiguring
method or by using
AddDbContext on the
application service provider.
If AddDbContext is used, then
also ensure that your
DbContext type accepts a
DbContextOptions<TContext>
object in its constructor and
passes it to the base
constructor for DbContext.

Dia 18

3. De Datalaag

» Stap 2 — DbContext klasse & Initializer

o BeerhallDatalnitializer.cs

* het initializeren van de DB gebeurt telkens bij de opstart van de
applicatie

- we voorzien een constructor dewelke de ApplicationDbContext
binnenkrijgt

* methode voor initialisatie: InitializeData(), deze maakt gebruik van
de ApplicationDbContext

- we maken gebruik van de drop create strategy, de DB wordt
gedropped en gecreéerd bij elke run:

public virtual bool EnsureDeleted()
Member of Microsoft.EntityFrameworkCore.Infrastructure DatabaseFacade

Summary:
Ensures that the database for the context does not exist. If it does not exist, no action is taken. If it does exist then the database is deleted.

public virtual kool EnsureCreated()
Member of Microsoft.EntityFrameworkCore.Infrastructure DatabaseFacade

Warning: The entire database is deleted an no effort is made to remaove just the datab

Returns: Summary:
True if the database is deleted, false if it did not exist. Ensures that the database for the context exists. If it exists, no action is taken. If it does not exist then the database and all its schema are created. If the

database exists, then no effort is made to ensure it is compatible with the model for this context.

Nate that this APl does not use migrations to create the database. In addition, the database that is created cannot be later updated using migrations. If
you are targeting a relational database and using migrations, you can use the DbContext.Database.Migrate() method to ensure the database is created
and all migrations are applied.

HoGent

True if the database is created, false if it already existed.

3. De Datalaag

» Stap 2 — DbContext klasse & Initializer

o BeerhallDatalnitializer.cs... vervolg

* InitializeData()

* bevat de seeding: statements om data toe te voegen aan de
context/DB

public static void InitializeData() {
_dbContext.Database.EnsureDeleted();
if (_dbContext.Database.EnsureCreated()) {
Location bavikhove = new Location { Name = "Bavikhove", PostalCode = "8531" };
Location roeselare = new Location { Name = "Roeselare", PostalCode = "8800" };
Location puurs = new Location { Name = "Puurs", PostalCode = "2870" };
Location leuven = new Location { Name = "Leuven", PostalCode = "3000" };
Location oudenaarde = new Location { Name = "Oudenaarde", PostalCode = "9700" };
Location affligem = new Location { Name = "Affligem", PostalCode = "1790" };
Location[] locations =
new Location[] { bavikhove, roeselare, puurs, leuven, oudenaarde, affligem };
_dbContext.Locations.AddRange(locations);

_dbContext.SaveChanges();

Merk op

- deze Drop/Create strategie is handig tijdens development daar je bij het opstarten van de applicatie steeds
H G t werkt met een verse databank die de gewenste data bevat; zo kunnen vooropgestelde scenario’s steeds
ouen gemakkelijk getest worden

3. De Datalaag

» Stap 3 — Configuratie

° Program.cs
- entry point voor de applicatie, bevat de Main methode

* in die Main methode wordt
« een WebHost gebouwd en de Run() methode aangeroepen om de
webapplicatie te runnen

* tijdens het bouwen van de WebHost wordt, onder andere,
appsettings.json toegevoegd als bron voor configuratie

 de configuratie wordt doorgegeven aan de StartUp klasse

StartUp.cs
Startup(..)
ConfigureServices(..)

Configure (..)

HoGent Dia 21

StartUp.cs
Startup(...)

ConfigureServices(..)

3. De Datalaag

Configure (..)

» Stap 3 — Configuratie
o StartUp.cs

* tijdens constructie wordt de configuratie doorgegeven

* het framework roept de methode ConfigureServices aan

 configuratie van services die nodig zijn voor de applicatie

- wij willen dat onze ApplicationDbContext en onze
Beerhalldatalnitializer als een service beschikbaar worden in de
applicatie

* het framework roept de methode Configure aan

- configuratie van de request pipeline
* wij kunnen op dit punt onze databank initialiseren

HoGent Dia 22

StartUp.cs

Startup(...)

3 o e ata I a a g ConfigureServices(..)

Configure (..)

» Stap 3 — Configuratie
o StartUp.cs — de constructor

* public Startup(IConfiguration configuration)

* het template voorziet in een constructor met 1 parameter die via DI wordt
geinjecteerd, deze parameter bevat de configuratie voor je applicatie

public interface IConfiguration
Member of Microsoft.Extensions.Configuration

Summary:
Represents a set of key/value application configuration properties.

+ de configuratie wordt beschikbaar via de Configuration property

public Startup(IConfiguration configuration)
{

Configuration = configuration;

public IConfiguration Configuration { get; }

At its simplest, configuration is just a collection of sources, which provide the ability to read and
write name/value pairs. If a name/value pair is written to Configuration , it is not persisted. This

means that the written value will be lost when the sources are read again.

HoGent

Dia 23

* Methods

* load):vodd
® Setfstring key, string volue) : void
* TryGettitring key, oot string volue) : bool

* GetChidieys(Enumerable<string » earberKeys, string paventPath, strng delmsiter) - €numeroble<string»

)

IConfigurationBuilder
Intesface

* Properties

Properties [get | - Dictionary <string. object >

& Provsders [get. | | Erumerable < XonfigurationProvider>
“ Methods

* AddiConfiqurationProvder provider) | Konfig:

¥ Buld) : KonfagurationRoot

HoGent

Crsanatin (ConfigurationBuilder
Class.
- Properties =
+. Data | get set:) : IDictionary <string, string> © Properties
* Methods * Properties | get | y<string. object>
% ConfigurationProvider() » Providers(get): KonfigurationProvider>
v GexC G string s, string parentPath, string delimiter) : lEnumerable <string> * Methods
* Load() : void * Add(IConfig ovige : KonSig
* Setistring key, string value) : void * Add(IConfig ider p bool load) : IConfig:
L . out string value) : boo! . g
ryGetstring key, ng value) 5 Build() : KonfigurationRoot
& * ConfigurationBuilder()
\
(mwmma A C IneConfig A
Class Qass
* ConfigurationProvider * ConfigurationProvider
=) e=]
- X “p L
+ Optional { get) : bool % Args{get set) : Enumerable<string>
Path|get):string * Methods
« Methods O ineConfig stning > args. [IDw¢ y <.
* JsonConfig Pr ing path) * Load(): void
« JsonConfig g path, bool optional)
* Load() :void
. v,
b Y if <SUNG. SINg > >
IEnumerable
= R ~) I ~)
o MemoryConfigurationProvider
Clns Qg
* ConfiqurationPromder * ConigarationProvider
=) E=)
* Methods * Methods
v Envi Config: * Add(string key, string value) : void
S o fig ing prefix) . 0 yValuePair<string, string> >
* Load() :void * MemoryConfigurationProvider)
/ .\ yConfigurationProviderIE: yaluePair<string. string> > initialData)
L 4
(") (" a)
IniConfigurationProvider XmiConfigurationProvl
Class CQass
* ConfigurationProvides * ConfigurationProvider
E=) 2
“ Properties “ Properties
Optional | get) : bool # Optional { get:) : bool
Path(get):string » Path{get):string
* Methods " Methods
* IniConfigurationProvider(string path) * Load():voud
* IniConfigurath ! ing path, bool © XmiConfigurationProvider(string path)
* Load(: void v XmiConfigurati g path, bool
>, - »

Dia 24

StartUp.cs
Startup(...)

ConfigureServices(..)

3. De Datalaag

Configure (..)

» Stap 3 — Configuratie

o StartUp.cs - ConfigureServices(IServiceCollection services)
* services is ASP.NET’s built in 1oC container

- de types die beheerd worden door deze loC container noemen we
services

* standaard wordt reeds een service die door het framework wordt
voorzien toegevoegd: AddControllersWithViews

* je kan je eigen types toevoegen aan deze container om ze later te
kunnen gebruiken bij bv. constructor injectie

* er zijn 3 opties voor de lifetime van een service

Transient

Transient lifetime services are created each time they are requested. This lifetime works best for
lightweight, stateless services.

Scoped
Scoped lifetime services are created once per request.

Singleton
Slngl eton lifetime services are created the first time they are requested (or when
snfigureservices is run if you specify an instance there) and then every subsequent request
will use the same instance. If your application requires singleton behavior, allowing the services
container to manage the service's lifetime is recommended instead of implementing the
singleton design pattern and managing your object’s lifetime in the class yourself.

READ
H (0) G en t https://docs.asp.net/en/latest/fundamentals/dependency-injection.html Dia 25

give me an IClub

9

[® Strategy

IClub implementations:
MR RMHSECAS > WoodClb
o IronClub

o WedgeClub
o PutterClub

Pattern

» At a high level, the goal of Dependency Injection is that a class (e.g. the golfer) needs
something that satisfies an interface (e.g. IClub). It doesn't care what the concrete type is
(e.g. WoodClub, IronClub, WedgeClub or PutterClub), it wants someone else to handle that
(e.g. a good caddy). The Service container allow you to register your dependency logic.

» IServiceCollection bevat extension methods

o Add*ServiceName* om services van een MVC applicatie te registeren, zoals bvb
AddControllersWithViews

o AddScoped : om een abstract type te mappen naar een concrete service, die dan per
request geinstantieerd wordt als een object er om vraagt.

HoGe.ﬁt

Dia 26

StartUp.cs
Startup(...)

3. De Datalaag

ConfigureServices(..)

Configure (..)

» Stap 3 — Configuratie

o StartUp.cs - ConfigureServices(IServiceCollection services)
* invulling voor onze applicatie:

* we registreren de ApplicationDbContext als een service

* we gaan de context niet zelf instantiéren, we laten dit over aan de loC

container; als een klasse nood heeft aan de context kan deze via de
constructor geinjecteerd worden

* EF voorziet hiervoor in de AddDbContext methode

= via de options parameter kunnen we specifieren welke fysische DB
zal gebruikt worden

de default lifetime = UseSglServer(connectionString)
f’s’fsﬁ‘ggfjc"”tm - de connectionstring hebben we gedefinieerd in appsettings.json

appsettings.json bevat configuratie 2 L
informatie voor de applicatie, in de ctor P S SQLEXPRESS ;Data
StartUp werd deze json file toegevoegd aan 3
Configuration

base=Beerha

HoGent

Dia 27

StartUp.cs

Startup(..)

3 o e ata I a a g ConfigureServices(..)

Configure (..)

» Stap 3 — Configuratie

o StartUp.cs - ConfigureServices(IServiceCollection services)
* invulling voor onze applicatie (vervolg):

- we registreren de BeerhallDatalnitializer als een service

* in een volgende stap wordt duidelijk waarom we dit doen (injectie in
Configure method)

services.AddScoped<BeerhallDatalnitializer>();

services die gebruik maken van de EF
dbContext service declareer je met een
lifetime die dezelfde is als die van de
dbContext, nl. scoped

HoGent

Dia 28

StartUp.cs

Startup(..)

3 o e ata I a a g ConfigureServices(..)

Configure (..)

» Stap 3 — Configuratie vervolg
o StartUp.cs - Configure(...)
- wordt aangeroepen door de runtime, na de methode
ConfigureServices(...)

* de services (zoals bv. onze BeerhallDatalnitializer) zijn dus reeds
geregistreerd en kunnen geinjecteerd worden in deze methode

- standaard worden reeds IApplicationBuilder (verplicht) en
IWebHostEnvironment geinjecteerd

public void Configure(IApplicationBuilder app, IWebHostEnvironment env,

*0 interface Microsoft. AspNetCore.Builder.|ApplicationBuilder
Defines a class that provides the mechanisms to configure an application’s request pipeline.

*0 interface Microsoft. AspMetCaore Hosting.IWebHostEnvironment
Provides information about the web hosting environment an application is running in.

HoGent Dia 29

StartUp.cs

Startup(..)

3 o e ata I a a g ConfigureServices(..)

Configure (..)

» Stap 3 — Configuratie vervolg
o StartUp.cs - Configure(...) vervolg

* we gaan zorgen dat onze Db bij de start van de applicatie
geinitialiseerd wordt:

* injectie van de BeerhallDatalnitializer
* aanroep naar InitializeData(...)

public void Configure(IApplicationBuilder app, IWebHostEnvironment env, BeerhallDatalnitializer beerhallDataInitializer) {

app.UseEndpoints(endpoints =>

{
endpoints.MapControllerRoute(
name: "default",
pattern: "{controller=Home}/{action=Index}/{id?}");
1

beerhallDatalnitializer.InitializeData();

}

HoGent Dia 30

3. De Datalaag

» Run de applicatie en inspecteer de gegenereerde
databank
o bekijk de inhoud van de tabellen
o pbekijk het ontwerp van de tabellen
o je kan hiervoor gebruik maken van

- SQL Server Management Studio, of werken via
- Server Explorer in Visual Studio

Q’ commit Configure EF and add database initialization

HoGent

Dia 31

THE

BEERHALL

de repositories

3. Data Access Layer

» Het is de Controller die met de persistentielaag zal
communiceren voor de CRUD

o Controller kan hiervoor rechtstreeks communiceren met een
instantie van ApplicationDbContext...

BrewerController

S—
SQL Server
-

HoGent Dia 33

3. Data Access Layer

» Nadelen:

o Unit testen van de controller.

 Unit testen werken niet rechtstreeks met databases (te traag, niet
geisoleerd, niet repeatable...)

o Sterke koppeling Controller — DbContext
* je hebt een dependency op EntityFramework in de controller

HoGent Dia 34

3. Data Access Layer

» Door het toepassen van het repository pattern, en
dependency injection zullen we een unit testable
controller maken die geen dependency heeft op Entity

Framework ...

HoGent Dia 35

3. DAL

» Repository pattern

Martin Fowler writes:

"A Repository mediates between the demain and data mapping layvers, acting like an in-
memory demain object collection. Client abjects construct guery specifications declaratively
and submit them to Repeository for satisfaction. Objects can be added to and removed from the
Repository, as they can from a simple collection of objects, and the mapping code
encapsulated by the Repository will carry cut the apprepriate operations behind the scenes.
Conceptually, a Repository encapsulates the set of objects persisted in 3 data store and the
sperations performed over them, providing 3 mere object-oriented view of the persistence
layer. Repository also supports the objective of achieving a clean separation and one-way
dependency between the domain and dats mapping layers."

P of EAA: Repository. (n.d.). Retrieved August 19, 2014, from http://martinfowler.com/eaaCatalog/repository.html

 Creéert een abstractie laag tussen de Controller en de Data laag.

- De repository gedraagt zich als een in-memory lijst van objecten
waarin we objecten kunnen toevoegen, verwijderen en updaten.

- Voordelen:
* Isoleert de toepassing van wijzigingen in de data opslag
* Het maakt ook de toegang tot de gegevens beter testbaar. (TDD)

HoGent Dia 36

http://martinfowler.com/eaaCatalog/repository.html

3 i No Repository With Repository
- D

irect access to database Abstraction layer between controller and database context. Unit

context from controller. tests can use a custom persistence layer to facilitate testing.

N Rep1 Unit Test

Controller Controller Controller

Mock Mock
Repository Repository Repository Repository

DbContext

DbContext

Entity Entity Alternative
Framework Framework Persistence
& Database & Database Medium

Implementing the Repository and Unit of Work Patterns in an ASP.NET MVC Application (9 of 10) | The ASP.NET Site. (n.d.).
Retrieved August 19, 2014, from http://www.asp.net/mvc/tutorials/getting-started-with-ef-5-using-mvc-4/implementing-the-
repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application

http://www.asp.net/mvc/tutorials/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application

3. Data Access Layer

» Repository pattern

o Maak een interface, dan kan je later de concrete implementatie
injecteren.

o Een typische repository interface bevat enkel wat nodig is voor de
CRUD.
o Meestal heb je minstens volgende 5 methodes :
- Geef alle, eventueel met bijkomende zoekmogelijkheden (GetAll)
- Geef één aggregate by id (primary key) (GetBy)
* Voeg een nieuwe aggregate toe aan de repository (Add)
- Verwijder een aggregate van de repository (Delete)
+ Opslaan van de wijzigingen (Save)
o MERK OP: Je hebt geen wijzig methode

* Reden: de repository moet bij de Save opdracht zelf in staat zijn om te
detecteren welke objecten gewijzigd zijn en de nodige aanpassingen in
de databank doorvoeren

HoGent Dia 38

3. Data Access Layer

» Repository pattern

° |n onze applicatie
- Brewers kunnen opvragen, creéren, wijzigen, verwijderen
- =>|BrewerRepository
- Alle locations kunnen opvragen, 1 location kunnen opvragen
- =>|LocationRepository

- We moeten niet rechtstreeks Beers kunnen opvragen
* we zullen in het domein via Brewer de Beers kunnen opvragen

HoGent Dia 39

3. Data Access Layer

» Repository pattern - IBrewerRepository

o Een typische repository interface
- conventie: interfaces starten met |
- merk op, dit behoort tot de Beerhall.Models.Domain namespace

namespace Beerhall.Models.Domain {
public interface IBrewerRepository {
Brewer GetBy(int brewerld);
IEnumerable<Brewer> GetAll();
void Add(Brewer brewer);
void Delete(Brewer brewer);
void SaveChanges();

}

Opm: void Delete (int brewerld) is ook mogelijk

HoGent

Dia 40

3. Data Access Layer

» Repository pattern - ILocationRepository
o we zullen geen locaties moeten kunnen toevoegen of
verwijderen

- daar we enkel read-operaties hebben is er geen nood aan een
SaveChanges() methode

namespace Beerhall.Models.Domain {
public interface ILocationRepository {
Location GetBy(string postalCode);
TEnumerable<lLocation> GetAll();

HoGent Dia 41

3. Data Access Layer

» Implementatie van de repository

o De implementatie van de interface is onderdeel van de Data
laag

> |In deze klassen hebben we een dependency op EF, data wordt
opgehaald via Linq queries

» Maak een nieuwe klasse BrewerRepository aan in Data
> Repositories folder
o Erf van IBrewerRepository

o Je kan automatisch de methodes van de interface
implementerenvia VS [7 i

14 IR l:‘) csos35 ‘BrewerRepository’ does not implement interface member
11 Implement interface explicitly IBrewerRepository.GetBy(int)'

= Implement System.|Equatable<BrewerRepository>

. pul void add(erewer brewer)
Generate constructor 'BrewerRepository() {
i oW new System. | Q0
Generate overrides... }
pub: void Delete(s rewer)
{
oW new System. | Q0
}

HoGent B Dia 42

3. Data Access Layer

» Implementatie van de repository

o maak gebruik van constructor injectie om de DbContext te
injecteren

o schrijf LINQ queries om de data op te halen

- we maken gebruik van eager loading

* je moet expliciet aangeven welke data je wil ophalen

* indien je bij GetAll() enkel de DbSet Brewers retourneert heb je geen
toegang tot de Beers die bij een Brewer behoren

* bv. op de index pagina willen we voor elke Brewer het aantal Beers dat
er gebrouwen wordt tonen: Include(b => b.Beers)

* bv. bij elke Brewer wordt ook de Location getoond: Include(b =>
b.Location)

EF Core ondersteunt ook lazy loading. Bij lazy loading zou je wel toegang hebben tot de Beers die
bij een Brewer behoren, ook al retourneert de repository enkel de DbSet<Brewer>. EF zou ze de
Beers voor jou ophalen wanneer je ernaar refereert. Het is belangrijk dat je weet in welke loading
strategieén je ORM tool voorziet en welke je wil gebruiken... Een groot nadeel van lazy loading is
de zware belasting van de DB server die de performantie fel doet dalen...

HoGent Dia 43

3. Data Access Layer

public class BrewerRepository : IBrewerRepository {
private readonly ApplicationDbContext _dbContext;
private readonly DbSet<Brewer> _brewers;

public BrewerRepository(ApplicationDbContext dbContext) {

_dbContext = dbContext;
_brewers = dbContext.Brewers;

public Brewer GetBy(int brewerId) {

return _brewers.SingleOrDefault(b => b.BrewerId == brewerId);

public IEnumerable<Brewer> GetAll() {
return _brewers.Include(b => b.Location).ToList();

public void Add(Brewer brewer) {
_brewers.Add(brewer);

public void Delete(Brewer brewer) {
_brewers.Remove(brewer);

public void SaveChanges() {
_dbContext.SaveChanges();

Indien er nood is aan andere methodes kan deze repository
uitgebreid worden. Zo zal het, indien nodig, bijvoorbeeld efficiénter
Zijn een methode

public IEnumerable<Brewer>
GetBrewersEstablishedBefore(DateTime established)

te voorzien in de repository. Deze zal enkel de gevraagde brewers
uit de databank halen.

Indien je niet in deze methode voorziet moet de client van deze
repository een GetAll() aanroepen. Deze retourneert dan alle
brewers, en deze moeten nadien door de client gefilterd worden
met een Where clause...

Dia 44

3. Data Access Layer

» Implementatie van de repository - vervolg

> maak gebruik van info uit analyse/ontwerp om te bepalen
welke includes noodzakelijk zijn

o creéer indien nodig extra methodes volgens de behoeften...

public class BrewerRepository : IBrewerRepository {

Voorbeeld extra methodes GetByWithBeers en
GetAllWithBeers

public Brewer GetBy(int brewerId) {

return _brewers.SingleOrDefault(b => b.BrewerId == brewerld);

}

public IEnumerable<Brewer> GetAll() {
return _brewers.Include(b => b.Location).TolList();

}

public Brewer GetByWithBeers(int brewerId) {
return _brewers.Include(b => b.Beers).SingleOrDefault(b => b.BrewerId == brewerId);

}

public IEnumerable<Brewer> GetAllWithBeers() {
return _brewers.Include(b => b.Location).Include(b => b.Beers).ToList();

}

} Dia 45

3. Data Access Layer

namespace Beerhall.Models.Data.Repositories {
public class LocationRepository : ILocationRepository {

private readonly DbSet<lLocation> _locations;

public LocationRepository(ApplicationDbContext dbContext) {
_locations = dbContext.Locations;
}
public Location GetBy(string postalCode) {
return _locations.SingleOrDefault(l => 1.PostalCode == postalCode);

public IEnumerable<Location> GetAll() {

return _locations.TolList();

HoGent Dia 46

3. Data Access Layer

@B commit Add repositories

- t HTTP S Usuallylr persi?ted
eques to a relationa
Controller > Model .- > database,
Response «—— View o perhaps via
HTML Presentation repositories

Model

B DR

HoGent Dia 47

MVC - Controllers en Views

HoGent

MVC

=

Controller

HoGent

Dia 49

4. Controller

3 Controller en

o handelt requests af

* MVC infrastructuur dat binnenkomende HTTP requests analyseert. Het
gebruikt segmenten van de URL om een specifieke controller te
instantiéren en daarbinnen een specifieke action method aan te roepen.

o Controller: is een klasse met methodes
* publieke action methods handelen de logica van de request af

 via model binding kan informatie van de request via parameters
doorgegeven worden aan een action method

* Best Practice : 1 Controller/Use case
o voert de door de client gevraagde request uit
* communiceert met de domein laag
« communiceert met de DAL
* bepaalt de response
* bv. vraagt aan View om een model(data) weer te geven

HoGent Dia 50

4. Controller

» Routing, Controller en Action Method

HttpApplication
Processing Pipeline

Routing

MvcHandler

HttpApplication
Processing Pipeline

Controller
Creation

Authentication and
Authorization

Model Binding

Action Method
Invocation

Result Execution
(View, etc.)

| Action Invocation
(with Filters)

HoGent

Dia 51

4. Controller

» Maak de BrewerController aan

o Rechtsklik op de map “Controllers” > Add > Controller...
o Kies MVC Controller Class, geef naam BrewerController > Add

MVC Controller - Empty

‘[: MVC Controller - Empty .
by Microsoft

‘[: MVC Controller with read/write actions
An empty MVC controller.

.I;:l MVC Controller with views, using Entity Framework Id: MvcControllerEmptyScaffolder

» Pas de routing aan zodat de Brewer/Index de Start
pagina wordt

HoGent Dia 52

THE

BEERHALL

Index

Index

» De startpagina van Beerhall geeft een overzicht van
alle brouwers met mogelijkheid om nieuwe brouwers
aan te maken of bestaande te editeren of te
verwijderen.

o Controller verantwoordelijkheden

- alle nodige gegevens van alle brewers ophalen

- de juiste View selecteren en deze de nodige gegevens aanbieden
> View verantwoordelijkheden

- de gegevens mooi presenteren

eeeeeeeeeeeeeeeeeee

Location

Bavik Rjksweg33 8531 Bavikhove

eee

Palm Breweries
I I 0 G e n t Roman Hauwaart 105 9700 Oudenaarde
Total turnover: 20 500 000 €

Index - Controller

» De BrewerController communiceert met de

BrewerRepository in de DAL laag voor het ophalen van
de brewers

o MVC framework zal de BrewerController instantiéren

o we maken gebruik van constructor injectie om de
BrewerRepository te injecteren in de BrewerController

- we moeten eerst de repository toevoegen aan de loC container,
zie StartUp.cs, methode ConfigureServices(...)

public void ConfigureServices(IServiceCollection services) {

services die gebruik maken van de EF
dbContext service declareer je met een
lifetime die dezelfde is als die van de
dbContext, nl. scoped

services.AddScoped<IBrewerRepository, BrewerRepository>();

HoGent Dia 55

Index - Controller

» nu kan de BrewerController de BrewerRepository
gebruiken...

public class BrewerController : Controller {
private readonly IBrewerRepository _brewerRepository;

public BrewerController(IBrewerRepository brewerRepository) {
_brewerRepository = brewerRepository;

}

HoGent Dia 56

Index - Controller

» ... en kan de Index action methode geimplementeerd
worden

namespace Beerhall.Controllers {
public class BrewerController : Controller {
private readonly IBrewerRepository _brewerRepository;

public BrewerController(IBrewerRepository brewerRepository) {
_brewerRepository = brewerRepository;

}

//public IActionResult Index() {

TEnumerable<Brewer> brewers = _brewerRepository.GetAll();
return View(brewers);

\\}

S

/

de action method retourneert een de gegevens die doorgegeven worden aan
ViewResult de view, deze komen in de Model property
van de ViewResult

HoGent Dia 57

Index - Controller

HTTP Usually persisted
Request > to a relational

--=>
Controller Model ~ ___ database,

Response View o perhaps via
HTML Presentation repositories

Model

1 .

-/ N J

HoGent Dia 58

Index - View

» Onze View moet de data die de controller aanlevert
weergeven in een HTML pagina.

» Het bevat geen business logical! Het plaatst enkel de
aangeleverde data op de juiste plaats in de HTML
pagina.

o data aangeleverd via ViewData
o data aangeleverd via Model

» De view bevat een mix van C# en HTML
o Razor
o Taghelpers

HoGent Dia 59

Index - View

» Maak een folder Brewer aan in de folder Views

» Maak een view genaamd Index aan in die folder

o we volgen de conventies: alle views voor de BrewerController
stoppen we in een submap van Views genaamd Brewer

o het resultaat is een cshtml bestand Index

- merk op: later zullen we gebruik maken van scaffolding en zal er

HoGent

reeds veel voor ons automatisch gegenereerd worden

Add MVC View

name: View

Empty (without model)

ons:

Re
Usi

(Leave

fe t libraries

rence scrip
e a layout page:

empty if it is set in a Razor _viewstart file)

Add

=

Dia 60

Index - View

» Specificatie van het model voor de view: @model

o op deze manier krijgen we voor de instantie die wordt
doorgegeven strong type checking en intellisense in de view

@model IEnumerable<Beerhall.Models.Domain.Brewer>

public class BrewerController : Controller { \

public IActionResult Index() {

IEnumerable<Brewer> brewers = zorg dat het aangegeven type overeenkomt

_brewerRepository.GetAll(); met het type dat doorgegeven wordt!
return View(brewers);
¥
}

HoGent Dia 61

Index - View

» Inhoud: gebruik van Model voor het overzicht

<table class="table table-striped table-condensed table-bordered">
<tr>
<th>Name</th>
<th>Street</th>
<th>Location</th>
<th class="text-right">Turnover</th>
<th class="text-right">Date established</th>
<th></th>

</tr> ‘(////,,/ gebruik van Model

@foreach (var item in Model) {
<tr>
<td>@item.Name</td>
<td>@item.Street</td>
<td>@item.Location?.PostalCode @item.Location?.Name</td>
<td class="text-right">@(item.Turnover?.ToString("c") ?? "-")</td>
<td class="text-right">@(item.DateEstablished?.Date.ToString("d") ?? "-")</td>
<td>
<a asp-controller="Brewer" asp-action="Detail" asp-route-id="@item.BrewerId">Detail |
<a asp-controller="Brewer" asp-action="Edit" asp-route-id="@item.BrewerId">Edit |
<a asp-controller="Brewer" asp-action="Delete" asp-route-id="@item.BrewerId">Delete
</td>
</tr>

}

</table> anchor tag helpers, tag helpers worden verderop in dit hoofdstuk toegelicht

HoGent

Dia 62

Index - View

» Inhoud: via ViewBag of ViewData de Title aanleveren

voor de Layout pagina
o standaard wordt de _Layout pagina gebruikt, deze wordt
verderop in dit hoofdstuk in detail toegelicht...

@

— ViewData["Title"] = "Brewers";

onze view moet dit | |
aanleveren ‘

<head>

<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />

<title>@ViewData["Title"] - BeerhallMVC</title>

Uit L
</head> stukje uit _Layout

Dia 63

HoGent

Index - View

» Inhoud: en zo valt de puzzel in elkaar

@model IEnumerable<Beerhall.Models.Domain.Brewer> Index.cshtml ~ ——~
@{

ViewData["Title"] = "Brouwers";
¥

<h2>@ViewData["Title"]</h2>
<p>

<a asp-controller="Brewer" asp-action="Create">Voeg een nieuwe brouwer toe
</p>

<table class="table table-striped table-condensed table-bordered">
<tr>

</tr>

@foreach (var item in Model) {

<tr>
</tr;
} <div class="container body- content
</table> _
@RenderBody () —
<hr />
<footer>
<p>© 2016 - BeerhallMVC</p>
</footer>
HOGent </div> stukje uit _Layout

Index - View

» Aanpassen view om de totale omzet van de brouwers
samen te tonen

o de view berekent de totale omzet niet, anders trek je business
logica binnen in de view

o de controller kan de totale omzet aanleveren via de ViewData

* via het Model wordt de lijst van brewers aangeleverd
* via ViewData wordt de totale omzet aangeleverd

public TActionResult Index() {

IEnumerable<Brewer> brewers = _brewerRepository.GetAll().OrderBy(b=>b.Name).ToList();

- ViewData["TotalTurnover"] = brewers.Sum(b => b.Turnover);

return View(brewers);

BrewerController.cs

@model IEnumerable<Beerhall.Models.Domain.Brewer>

<table class="table table-striped table-condensed table-bordered">

™ :/table>
F{(}(}f}f‘t <p>Total turnover: @($"{(int)ViewData["TotalTurnover"]:C}")</p>

Index - View

- t HTTP } Usuall;lf persi?ted
eques to a relationa
Controller > Model .- > database,
Response «—— View o perhaps via
HTML Presentation repositories
Model

DA A ST

we kunnen nu verder werken aan de rest van
de CRUD operaties...

77 commit Add functionality Brewer - Index

HoGent Dia 66

THE

BEERHALL

Edit - GET

Edit

» De pagina geeft een formulier met alle gegevens van
de brewer die we wensen te editeren —

» De gebruiker kan editeren en de gewumgde | egevens

bewaren, of het editeren annuleren

gebeurt via HTTPPOST

gebeurt via HTTPGET

Beerhall Home Privacy

Brewers

Street Location

BBBBB

ooooooooooooooooooooooooooo

0000000000

00000000000000

HoGent

Dia 68

Edit [GET]

» Edit [GET]

o Controller verantwoordelijkheden

- alle nodige gegevens van de gewenste brewer ophalen

- de juiste view selecteren en deze de gegevens aanbieden
> View verantwoordelijkheden

- de gegevens presenteren zodat gebruiker kan editeren, bewaren

of annuleren

HoGent

Beerhall Home Privacy

Edit brewer

Name

Bavik
Street
Rijksweg 33
PostalCode

Bavikhove

Turnover

20000000

Save | Cancel

Dia 69

Edit [GET] - Controller

» de controller krijgt via de parameter id de nodige
informatie binnen van de view Index

<td>

<a asp-controller="Brewer" asp-action="Detail" asp-route-id="@item.BrewerId">Detail |
<a asp-controller="Brewer" asp-action="Edit" asp-route-id="@item.BrewerId">Edit |

<a asp-controller="Brewer" asp-action="Delete" asp-route-id="@item.BrewerId">Delete

</td> Index.cshtml

\

app.UseMvc(routes => {
routes.MapRoute(

name: "default",

template: "{controller=Brewer}/{action=Index}/{id?}"); Routing configuratie in

})s / StartUp.cs
/

public TActionResult Edit(int idy—

throw new NotImplementedException();

Edit action method in
} BrewerController

HoGent

Dia 70

Edit [GET] - Controller

» ... de controller kan zo de gewenste brewer uit de repository ophalen

public IActionResult Edit(int id) {

Brewer brewer = _brewerRepository.GetBy(id);

}

» deze brewer kan nu doorgegeven worden aan de view, maar we gaan
gebruik maken van een ViewModel

» een viewmodel heeft als specifieke doel de gewenste data aan
te leveren voor een view

° het viewmodel zal enkel en alleen die properties van onze
domeinobjecten bevatten, die nodig zijn in de view

- als bv. DateEstablished geen deel uitmaakt van de edit view zal het geen
deel uitmaken van ons viewmodel

 overposting is nu niet meer mogelijk
o het viewmodel kan mogelijks een combinatie van properties van
verschillende domeinklassen bevatten

HoGent Dia 71

Edit [GET] - Controller

» de viewmodels stoppen we in een submap van Models
genaamd ViewModels

» de naam van het viewmodel geeft aan voor welke view
het zal dienen: BrewerEditViewModel

using Beerhall.Models.Domain;

namespace Beerhall.Models.ViewModels {

public class BrewerEditViewModel {

public string Name { get; set; } Merk op dat alle setters publiek zijn, via input velden

in de view zal de waarde kunnen aangepast worden

public string Street { get; set; }

We zullen een dropdownlist maken met alle gemeenten in,
wanneer de gebruiker een gemeente selecteert zal de unieke
postalcode naar de conrtoller gestuurd worden

public int? Turnover { get; set; }

public string PostalCode { get; set; } ‘\\\\\

public BrewerEditViewModel(Brewer brewer)

{
Name = brewer.Name;
Street = brewer.Street; Constructor ontvangt domeinobject(en) en bouwt
PostalCode = brewer.Location?.PostalCode; het viewmodel
Turnover = brewer.Turnover;
}

}

HoGent Dia 72

Edit [GET] - Controller

» de controller geeft nu het viewmodel door aan de
view...

public IActionResult Edit(int id) {
Brewer brewer = _brewerRepository.GetBy(id);

return View(new BrewerEditViewModel(brewer));

HoGent Dia 73

Edit [GET] - Controller

» let op: om het viewmodel aan te maken hebben we
nood aan de Postalcode die in Location zit, we moeten
er voor zorgen dat als we de brewer ophalen, we ook
zijn location ophalen, even checken in de
BrewerRepository...

public class BrewerRepository : IBrewerRepository { aanpassing in BrewerRepository

public Brewer GetBy(int brewerId) {

return _brewers.Include(b => b.Location).SingleOrDefault(b => b.BrewerId == brewerId);
public class BrewerEditViewModel {

public string PostalCode { get; set; }

public BrewerkEditViewModel(Brewer brewer)

{

PostalCode = brewer.Location?.PostalCode;

HoGent

Edit [GET] - View

» we kunnen nu de view Edit.cshtml aanmaken in de

map Views > Brewer

@model Beerhall.Models.ViewModels.BrewerEditViewModel

@{
ViewData["Title"] = "Edit brewer";
}

<h2>@ViewData["Title"]</h2>

<form asp-action="Edit" method="post">

t standaard gebruik gemaakt van Bootstrap

- Er word
<div class="form-group">
<label asp-for="Name"></label>

<input asp-for="Name" class="form-control” />
</div>
<div class="form-group">
<label asp-for="Street"></label>
<input asp-for="Street" class="form-control” />
</div>
<div class="form-group">
<label asp-for="PostalCode"></label>
<input asp-for="PostalCode" class="form-control” />
</div>
<div class="form-group">
<label asp-for="Turnover"></label>
<input asp-for="Turnover" class="form-control” />
</div>
<div>
<button class="btn btn-primary" type="submit">Save</button>
<a asp-action="Index" class="btn btn-default">Cancel
</div>

</form> Edit.cshtml

Dia 75

Focus on TagHelper

» vereenvoudigen het werk om HTML pagina’s op de
server te genereren
o onderdeel van de .cshtml views, Razor markup
o very HTML-like, met IntelliSense
o werken in op HTML elementen
- ~element name
- ~attribute name
- ~parent tag

» MVC Core bevat een aantal voorgedefinieerde tag
helpers

» Je kan eenvoudig je eigen tag helpers ontwikkelen in
CH

HoGent Dia 76

Focus on TagHelper

» @addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

o tag helpers moeten expliciet toegevoegd worden aan een
view

o standaard wordt dit gedaan in _Viewlmports die in de map
Views zit

* de inhoud van _Viewlmports heeft effect op alle views in de
folder waarin het is geplaatst, alsook de subfolders daarvan

- standaard kan je dus op elke view gebruik maken van TagHelpers,
tenzij je op een view gebruik maakt van @removeTagHelper

- een ander typisch gebruik van _Viewlmports is de declaratie van
@using
- zo vermijd je het herhalen van @using in verschillende views

HoGent Dia 77

Focus on TagHelper

» voorbeeld anchor tag helper

<a asp-action="Index" asp-controller="Brewer" class="btn btn-
d%fault">Lis brewers

de taghelper zal de de naam van de de naam van de klassiek attribuut,
generatie van een action method die controller die zal verwijzend naar
<a>element zal aangeroepen gebruikt worden Bootstrap klassen
bepalen worden

List brewers

\ gegenereerde HTML

in de routing (zie StartUp —
Configure) is Brewer als de
default-controller en Index
als de default-action
gedefinieerd...

HoGent Dia 78

http://localhost:1800/

Focus on TagHelper

» voorbeeld form tag helper

Ho

<form asp-action="Edit" method="post">

o genereert en stelt het action-attribuut in voor een action method in een
controller of een benoemde route
 gebruik asp-controller attribuut om controller te selecteren
* hier niet gespecifieerd, neemt huidige controller: Brewer
 gebruik asp-action attribuut om action method in te stellen
* hier expliciet ingesteld op Edit
- gebruik asp-route-<parameter name> attribuut om extra parameters toe te
voegen aan de route
* hier niet gespecifieerd, enkel de huidige route-value: id =1

o genereert een hidden request verification token om cross-site request forgery
te kunnen voorkomen

* meer hierover in een volgend hoofdstuk

<form method="post" action="/Brewer/Edit/1">

<input name="__RequestVerificationToken" type="hidden" value="CfDJI80IHYFYge@dPrEOE92DFCD-
E2HfdMSFjtD8taub8hS6Lr88XKs0aiE6iQfMS9Ds4KVgmvMPKrr9 g6IUjWeUb4B1IugDrvkDjOct_p@An@T7Uhpecvu3-Ingb71d610-
2WI9pEVKKRAKFXMVN8JWTYRE" /> .
</form> gegeneredyple O ML

Focus on TagHelper

» voorbeeld input tag helper
° in de form op de Brewer — Edit view vinden we

<input asp-for="Turnover" class="form-control" />

Pt

werd aan deze view

dit is de naam van een property van
BrewerEditViewModel die doorgegeven

o asp-for zorgt voor de generatie van een id en name attribuut
gebaseerd op de property “TurnOver”

o asp-for stelt het type attribuut in gebaseerd op het type van

de Property

HoGent

NET type
Bool
String
DateTime
Byte

Int

Single, Double

Input Type

type="checkbox”

type="text"

type="datetime”

type="number"
type="number"

type="number"

gegenereerde HTML

<input class="form-control"
type="number" id="Turnover"
name="Turnover" wvalue="20000000" />

Focus on TagHelper

554‘}3 https://docs.asp.net/en/latest/mvc/views/tag-helpers/index.html

» in een volgend hoofdstuk gaan we data annotaties
gebruiken en zal de kracht van tag helpers nog
duidelijker worden...

HoGent Dia 81

Edit [GET] - View

» aanpassen van de view: we willen de gebruiker een
dropdownlist aanbieden voor het editeren van de
locatie

> de controller kan alle locaties ophalen en aanleveren via
ViewData, hiervoor heeft de controller nood aan de
LocationRepository: constructor injectie

public void ConfigureServices(IServiceCollection services) { aanpassing in StartUp.cs

services.AddScoped<ILocationRepository, LocationRepository>();

public class BrewerController : Controller { aanpassing in BrewerController.cs
private readonly IBrewerRepository _brewerRepository;

private readonly IlocationRepository _locationRepository;

public BrewerController(IBrewerRepository brewerRepository, IlLocationRepository locationRepository) {
_brewerRepository = brewerRepository;

_locationRepository = locationRepository;

Edit [GET] - View

» aanpassen van de view: dropdownlist vervolg
o SelectList is het aangewezen type om de lijst van locaties aan

te leveren aan de view

public class SelectList : Microsoft.AspNetCore.Mvc.Rendering.MultiSelectList
Member of Microsoft.AspNetCore.Mvc.Rendering

Summary:

specified collection of Microsoft AspNetCore.Mvc.Rendering.SelectListltem objects.

zie APl of VS Object browser

Represents a list that lets users select a single item. This class is typically rendered as an HTML <select> element with the

public IActionResult Edit(int id) {
Brewer brewer = _brewerRepository.GetBy(id);
ViewData["Locations"] = new SelectList(

_locationRepository.GetAll().OrderBy(1l => 1.Name),

aanpassing in BrewerController.cs

IEnumerable van items

/

nameof (Location.PostalCode), *—

nameof (Location.Name)) ;¢—

bij selectie wordt de
waarde van deze
property geretourneerd

return View(new BrewerEditViewModel(brewer));

de waarde van deze
property wordt
getoond in de dd-list

HoGent

Dia 83

Edit [GET] - View

» aanpassen van de view: dropdownlist vervolg
o de view gebruikt de ViewData
o de select tag helper helpt om de dropdownlist te genereren

aanpassing in Edit.cshtml
<div class="form-group">
<label asp-for="PostalCode"></label>

<select asp-for="PostalCode" asp-items="@(ViewData["Locations"] as SelectlList)" class="form-
control">

<option value="">-- select location --</option>

N

location --” getoond in de dropdownlist

</select>
</div>
\ Wanneer de location van een brewer niet gekend is wordt “-- select

de select tag helper

HoGent Dia 84

THE

BEERHALL

Edit - POST

Edit [POST] - Controller

» Edit [POST]

o Controller verantwoordelijkheden
- de gegevens van het formulier ontvangen
* controleren of de gegevens geldig zijn
- het domein en de repositories aansturen

* de brewer moet gewijzigd worden volgens de formuliergegevens
- de gewijzigde brewer moet gepersisteerd worden

* indien alles goed verloopt moet de controller redirecten naar de
Index pagina

* indien er iets verkeerd loopt moet de controller het formulier
terug aanbieden

HoGent Dia 86

Edit [POST] - Controller

» Edit [POST]

o de formulier gegevens worden met een HTTP Post request
meegestuurd
o deze HTTP Post request wordt afgehandeld door een nieuwe
action method

o via MVC model binding zullen de formulier gegevens als
parameter aan deze action method aangeleverd worden

via dit attribuut kunnen we aangeven dat deze action method de

HTTP Post Edit request zal afhandelen

e

»
[HttpPost]

public TIActionResult Edit(BrewerEditViewModel brewerEditViewModel, int id) {

throw new NotImplementedException();

model binding zal zorgen dat de formuliergegevens in deze
parameter terecht komen

—

HoGent

Dia 87

Edit [POST] - Controller

» Merk op

> we hebben eenzelfde URL (bv. .../Edit/1) maar twee action
methods dewelke, afhankelijk van de HTTP verb zullen
worden aangeroepen
- get — aanbieden van een formulier met initiéle gegevens

- post - verwerken van de formuliergegevens die werden
teruggezonden

o indien je een aparte URL neemt voor de post (bv. .../Save/1)
dan zal

* deze URL gebruikt worden wanneer gebruikers formuliergegevens
opnieuw moeten invullen

- kunnen gebruikers deze URL bookmarken, met mogelijks nare
gevolgen...

HoGent Dia 88

Focus on Post/Redirect/Get pattern

4
e —
LAY W

L

Post/Redirect/Get (PRG) is a web development design pattern that prevents some duplicate form submissions, creating a more intuitive interface for u_sﬁ{g}ﬁ‘f:&?iﬁ
agents (users). PRG supports bookmarks and the refresh button in a predictable way that does not create duplicate form submissions.

When a web form is submitted to a server through an HTTP POST request, a web user that attempts to refresh the server response in certain user agents
can cause the contents of the original HTTP POST request to be resubmitted, possibly causing undesired results, such as a duplicate web purchase.[l

To avoid this problem, many web developers use the PRG patterni2 — instead of returning a web page directly, the POST operation returns a redirection
command. The HTTP 1.1 specification introduced the HTTP 303 ("See other") response code to ensure that in this situation, the web user's browser can
safely refresh the server response without causing the initial HTTP POST request to be resubmitted. However most common commercial applications in use
today (new and old alike) still continue to issue HTTP 302 ("Found") responses in these situations.

The PRG pattern cannot address every scenario of duplicate form submission. Some known duplicate form submissions that PRG cannot solve are:

» If a web user refreshes before the initial submission has completed because of server lag, resulting in a duplicate HTTP POST request in certain user
agents.

User fills out order

User clicks
User fills out order

| Insertorder
into the database.

-| Imsertorder
|| intothe database

| AND

Your order = — : i -« | Send confirmation | Send confirmation
was ; | page

successful. = ']

double post problem

double post problem solved with
PRG-pattern

HoGent

https://en.wikipedia.org/wiki/Web_development
https://en.wikipedia.org/wiki/Design_pattern
https://en.wikipedia.org/wiki/Form_(web)
https://en.wikipedia.org/wiki/User_agent
https://en.wikipedia.org/wiki/Internet_bookmark
https://en.wikipedia.org/wiki/Post/Redirect/Get#Duplicate_form_submissions
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/POST_(HTTP)
https://en.wikipedia.org/wiki/Purchasing
https://en.wikipedia.org/wiki/Post/Redirect/Get#cite_note-1
https://en.wikipedia.org/wiki/Post/Redirect/Get#cite_note-2
https://en.wikipedia.org/wiki/HTTP_303
https://en.wikipedia.org/wiki/HTTP_302
https://en.wikipedia.org/wiki/Lag

Edit [POST] - Controller

» Model binding

o Laat ons kijken hoe de gegevens van
het formulier de controller bereiken

<h2:Edit brewer</h2:

<form method="post" action="/Brewer/Edit/5">
<div class="form-group™:
<label for="Nams">Name</labels
<input class="form-control” type="text"™ id="Name" name="Name"
<fdiv>
<div class="form-group”>
<label for="5treet™>Street</label:
<input class="form-control” type="text" id="Street” name="Street" value="Hauwa
</fdiv>
<div class="form-group™:>
<label for="PostalCode":»PostalCode</label:
<select class="form-control” id="PostalCode" name="PostalCode">
<option value=""3»-- select location --</option:
<option wvalue="179@">Affligem</option:
<option wvalue="8531">Bavikhove</option>
<option value="3@8@":Leuven</option:
<option selected="selected” value="978@":>0Oudenaarde</option:
<option wvalue="2878">Puurs</option>
<option value="388@":Roeselare</option>
</select»
<fdiv>
<div class="form-group™:
<label for="Turnover”:>Turnover<,/label>
<input class="form-control” type="number" id="Turnover” name="Turnover" value="" />
<fdiv>
<dive
<button class="btn btn-primary” type="submit">Sawve</button>
Cancel
<fdiv>
<input name="__ RegquestVerificationToken" type="hidden™
value="CTfDIBCwWAPEKMUOI TUOWTKL4uleswmdoUanv1ly6lsz_TNE32ZTHM _SLRILO1ZS_sFIFbCpzifoDe@yQuNsjuDvalvD7dMerxzLRE 1wy
<hr [
<footer:>
<pr© 2817 - Beerhall</p>
</footers

</div> de broncode van .../Brewer/Edit/5

lue="Roman" />

Edit brewer

Name

Roman

Street

Hauwaart 105

PostalCode

Oudenaarde v

Turnover

5000000

de waarden van de name attributen
van de input velden zijn belangrijk
voor model binding...

Dia 90

Edit [POST] - Controller

» Model binding

o ... de gebruiker klikt op

Edit brewer

Name

Roman

Street
Hauwaart 105
PostalCode

Oudenaarde v

Turnover

500000

Save Cancel

In de request body vinden we de Form Data: een
lijst van key/value pairs,

key: naam attribuut van het input field

value: de waarde die werd ingevoerd

Mame

1 Lests

(0 B transferred

Hulpprogramma's voor entwikkelaars Ctrl+Shift+|

® Headers | Preview Response Timing

SR v General

Request URL: http://localhost:1385/Brewer/Edit/s
Referrer Policy: no-referrer-when-downgrade

¥ Request Headers
4 Provisional headers are shown
Content-Type: application/x-www-form-urlencoded
Origin: http://localhost:1385
Referer: http://locelhost:1385/Brewer/Edits/s
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.8 (Windows NT 18.8; Wingd; x
64) ApplelebKit/537.36 (KHTML, like Gecko) Chrom
e/6@.8,3112.113 Safari/537.36

¥ Form Data VIEW SOUMCe view URL encoded

MName: Roman
Street: Hauwaart 185

w PostalCode: 9788

Turnover: 528088

__RequestVerificationToken: CfDISCWAPEKMUOIIuOW7K14u
IetUzYenwFCxIINCIWeXol gDF JE sWEXYPmT J9TxMDuQusrEPS
Hot@3-MOwiObm_NPSILQiDHFEY E@CChyc9 6i7-FKBASTSEy
nY2tE8r7wHLoRsANv-floplUsskyYisF4a

Dia 91

Edit [POST] - Controller

. X
» Model binding in actie ¥

MVC gaat een BrewerEditViewModel x
% | Headers | Preview Responze Timing instantiéren,
¥ General
Request URL: http://localhost:1385/Brewer/Edit/5 keys uit deform data matchen met de
Referrer Policy: no-referrer-when-downgrade propert"es van de ,‘nstantie’
¥ Request Headers .
Provisional headers are shown en de values gebruiken om waarden aan
Content-Type: application/x-www-form-urlencoded die properties toe te kennen
Origin: http://localhost:1385
Referer: http://localhost:1385/Brewer/Edit/s
Upgrade-Insecure-Requests: 1 public class BrewerEditViewModel {
User-Agent: Mozilla/5.8 (Windows NT 18.8; WinBd; x public str‘ing Name { get; set; }
64 #.p:lelx'e:biit.-"SBT.':!-? (KHTML, like Gecko) Chrom public str‘ing Street { get; set; }
e/68.8.3112.113 Safari/537.36
- : I public string PostalCode { get; set; }
¥ Form Data view source view URL encodec public int? Turnover { get; set; }
Name: Roman
Street: Hauwaart 185
PostalCode: 9788 }

Turnover: 528088
__RequestVerificationToken: CfDI3CwApEKMUOD] JK14u
IetUzY@nwFCxI1NcIWaXol gDF 3EsWKXYPmMT 9T xMDuQusr

Hot®3-MOowiObm_NP&I1QiDHFBY E@CCbyc9_6i7-FKBAsTSgy \
nMY2tB8r7wH1oRsANy-fIanllISSkVicFa

[HttpPost] \

public IActionResult Edit(BrewerEditViewModel brewerEditViewModel, int id) {

throw new NotImplementedException();

HoGent - b2 92

Edit [POST] - Controller

» Model binding in actie

> Om te kunnen instantiéren moet BrewerEditViewModel een
default/parameterloze constructor hebben!

- dit moeten we nog toevoegen, er wordt een run-time exception
geworpen als deze niet aanwezig is...

> Om waarden aan de properties te kunnen toekennen moeten
de properties publieke setters hebben

¢ dlt is FEEdS Ok public class BrewerEditViewModel {

public
public
public
public

public
}

public

string Name { get; set; }
string Street { get; set; }
string PostalCode { get; set; }
int? Turnover { get; set; }

BrewerEditViewModel() {

BrewerEditViewModel (Brewer brewer) : this() {

Name = brewer.Name;

Street = brewer.Street;

PostalCode = brewer.Location?.PostalCode;
Turnover = brewer.Turnover;

1}
HoGent

Dia 93

Edit [POST] - Controller

» De Edit [POST] action method implementatie
o de controller kan nu met brewerEditViewModel aan de slag...

[HttpPost]
public IActionResult Edit(BrewerEditViewModel brewerEditViewModel, int id) {
Brewer brewer = _brewerRepository.GetBy(id);

brewer.Name = brewerEditViewModel.Name;
brewer.Street = brewerEditViewModel.Street;

brewer.Location = brewerEditViewModel.PostalCode == null ? null
:_locationRepository.GetBy(brewerEditViewModel.PostalCode);
brewer.Turnover = brewerEditViewModel.Turnover; het is belangrijk de veranderingen te
_brewerRepository.SaveChanges(); < persisteren!
return RedirectToAction(nameof(Index));
}
v Edit [POST]
= Controller verantwoordelijkheden
* de gegevens van het formulier ontvangen
* controleren of de gegevens geldig zijn komt aan bod in een
* het domein en de repositories aansturen volgend hoofdstuk

* de brewer most gewijzied worden volgens de formuliergegevens
* de gewijzizde brewer most gEpersisteerd wordsn
* indien alles goed verloopt moset de controller redirecten naar d=

Index pagina /
* indien er iets verkeerd loopt moet d= controller het formulier
t=rug aanbiedsn

HoGent Dia 94

Edit [POST] - Controller

Q’ commit Add functionality Brewer - Edit

HoGent

Focus on Model Binding

READ https://docs.asp.net/en/latest/mvc/models/model-binding.html#how-model-binding-works

CAREFULLY

HttpApplication
Processing Pipeline

Routing

= |

HoGent

HttpApplication

Processing Pipeline

|
|

Controller
Creation

Authentication and
Authorization

Model Binding I

Action Method
Invocation

Result Execution
(View, etc.)

| Action Invocation
(with Filters)

Model binding in ASP.NET Core MVC
maps data from HTTP requests to action
method parameters. The parameters
may be simple types such as strings,
integers, or floats, or they may be
complex types. This is a great feature of
MVC because mapping incoming data to
a counterpart is an often repeated
scenario, regardless of size or complexity
of the data. MVC solves this problem by
abstracting binding away so developers
don’t have to keep rewriting a slightly
different version of that same code in
every app. Writing your own text to type
converter code is tedious, and error
prone.

Dia 96

Focus on Model Binding

» er zijn verschillende manieren waarop gegevens van de
client kunnen doorgegeven worden

o Form values

de model binder zal in deze
volgorde aangereikte gegevens
proberen te binden

o Route values

o Query strings

HoGent

Dia 97

Focus on Model Binding

» Form values
o gegevens zitten in de HTTP POST request
o dit kunnen primitieve types zijn
- die op basis van parameter_name gebonden worden

* voorbeeld: een alternatieve action method voor Brewer Edit
[POST]

[HttpPost]
public IActionResult Edit(int id, string name, string street, string postalCode, int? turnover) {

<form method="post" action="/Brewer/Edit/5">
<input type="hidden" data-val="true" data-val-reguired="The Brew
<div class="form-group">
<label for="Nams">Name</label>
<input class="form-control” type="text" id="Name" name="Mame" value=’Roman"” />
<fdivs
<div class="form-group™:
¢«label for="Street":»Street</label:
<input class="form-control” type="text" id="Street” name="Street" value="Hauwaart 185" />

rId field is fequired.” id="BrewerId" name="BrewerId" wvalus="53" /»

<fdive

HoGent ia 98

Focus on Model Binding

» Form values, vervolg

o dit kunnen complexe types (klassen zijn)
- de Brewer Edit [POST] was hier een voorbeeld van

- model binding kan ook met nog meer complexe types

* wanneer een klasse properties heeft die op zich weer klassen zijn zal
via reflectie, en op een recursieve manier, de structuur doorlopen
worden en op basis van parameter_name.property_name binding
gerealiseerd worden

- model binding kan ook met collections

* binding kan gebeuren op basis van parameter_name[index] (of
kortweg [index]), of

* op basis van parameter_namel[key] (kortweg [key]) voor bv. dictionary

types

HoGent Dia 99

Focus on Model Binding

» Route values

o gegevens zitten in een benoemd URL segment
o de definitie van de routing is hier belangrijk

* namen van segmenten in MapRoute komen overeen met namen
van parameters van de action method

- we gebruikten dit in de Brewer Edit [GET]

- zie anchor tag helper, asp-route-<parameter name> attribuut

<td>

<a asp-controller="Brewer" asp-action="Detail" asp-route-id="gitem.BrewerId">Detail |
<a asp-controller="Brewer" asp-action="Edit" asp-route-id="@item.BrewerId">Editeer</ar |
<a asp-controller="Brewer" asp-action="Delete" asp-route-id="@item.BrewerId"»Verwijder</a»

£/td>» Index.cshtml

app.UseMvc(routes =» {

routes.MapRoutel

voorbeeld van een gegenereerde
URL: .../Brewer/Edit/5

name: "default”,

template: "{controller=Brewer}/{action=Index}/{id2}"}; Routing configuratie in

= H//”/,/ Startlip.cs
public IActionResult Edit(int id

throw new NotImplementedException(); Edit action method in
BrewerControfler

Dia 100

Focus on Model Binding

» Query strings

o gegevens zitten in een query string deel van de URL
- de query string bevat de naam=waarde paren die als basis voor de

binding dienen
- voorbeeld

Search for

| mvc core model binding|

<form asp-action="Search" method="get">
<div class="form-group">
Search for <input type="search" name="searchString"
class="form-control" />
</div>
<div>
<button class="btn btn-primary" type="submit">Search</button>
</div>
</form>

e

C | © localhost:1800/Brewer/Search?searchString=mv+caore+model+binding

HoGent

“mvc core model binding”

public IActionResult Search(string searchString) {

Dia 101

THE

BEERHALL

Create - GET

Create

» De pagina geeft een formulier waarop alle gegevens
van een brewer kunnen ingevuld worden
o dit formulier is analoog aan het edit-formulier

» De gebruiker kan de gegevens bewaren (i.e. de brewer
aanmaken), of kan annuleren

» Ook hier zullen we weerom
o een GET en een POST hebben
o gebruik maken van het PRG pattern

HoGent

Dia 103

Create [GET] - Controller

» URL: .../Brewer/Create

public IActionResult Create() {

4 ACtIOﬂ methOd throw new NotImplementedException();
}

o de controller zal de view gebruiken die we voor Edit hebben
gemaakt
- er moet een leeg brewerEditViewModel doorgegeven worden als
model
- de lijst met locations moet doorgegeven worden via de ViewData
- dit deden we reeds voor Edit, we kunnen deze code hergebruiken

* refactor time: we extraheren dit stukje code in een aparte methode
- maak gebruik van de refactoring mogelijkheden van Visual Studio

HoGent Dia 104

Create [GET] - Controller

» Create [GET] action method

public IActionResult Create() {
ViewData["Locations"] = GetLocationsAsSelectList();

return View(nameof(Edit), new BrewerEditViewModel());

} f

we moeten de naam van de view specifieren want dit is niet
de default view voor deze action method

o de methode die we via de refactoring verkregen:

private SelectlList GetLocationsAsSelectlList() {
return new SelectlList(
_locationRepository.GetAll().OrderBy(1l => 1.Name),
nameof(Location.PostalCode),

nameof(Location.Name));

HoGent Dia 105

Create [GET] - View

» Via ViewData kunnen we doorgeven aan de view of het
een edit of een create betreft? bv, in Create method

ViewData["IsEdit"] = false;

» ...en een kleine ingreep in de Edit view volstaat om
dezelfde view te kunnen gebruiken voor Create en voor

Ed |t Create brewer

Name

@model Beerhall.Models.ViewModels.BrewerEditViewModel

Street

@{ PostalCode

— select location —
ViewData["Title"] = (bool)ViewData["IsEdit"] ? "Edit brewer" : "Create brewer";

}

<h2>@ViewData["Title"]</h2>

<form aﬁ@methodgpmt..>

</form> Merk op dat als we geen expliciete controller/action opgeven bij
een form-tag, automatisch bij httpPost de controller/action
HOGEI‘It gebruikt wordt van de HttpGet Dia 106

THE

BEERHALL

Create - POST

Create [POST] - Controller

» Create [POST]

o Controller verantwoordelijkheden
- de gegevens van het formulier ontvangen
* controleren of de gegevens geldig zijn

- het domein en de repositories aansturen
- de brewer moet aangemaakt worden volgens de formuliergegevens

- de brewer moet gepersisteerd worden

* indien alles goed verloopt moet de controller redirecten naar de
Index pagina

* indien er iets verkeerd loopt moet de controller het formulier
terug aanbieden

HoGent Dia 108

Create [POST] - Controller

» Create [POST]

[HttpPost]
public IActionResult Create(BrewerEditViewModel brewerEditViewModel) {

throw new NotImplementedException();

}
o de implementatie is vrij analoog aan Edit [Post] en ook hier
kunnen we gebruik maken van refactoring

- we extraheren een methode voor het mappen van een
BrewerEditViewModel naar een Brewer...

private void MapBrewerEditViewModelToBrewer(BrewerEditViewModel brewerEditViewModel, Brewer brewer) {
brewer.Name = brewerEditViewModel.Name;
brewer.Street = brewerEditViewModel.Street;
brewer.Location = brewerEditViewModel.PostalCode == null
? null
: _locationRepository.GetBy(brewerEditViewModel.PostalCode);
brewer.Turnover = brewerEditViewModel.Turnover;

HoGent Dia 109

Create [POST] - Controller

» Resulterende implemenatatie voor Edit [POST] en
Create [POST]

[HttpPost]

public IActionResult Create(BrewerEditViewModel brewerEditViewModel) {
Brewer brewer = new Brewer(brewerEditViewModel.Name);
MapBrewerEditViewModelToBrewer (brewerEditViewModel, brewer);
_brewerRepository.Add(brewer);
_brewerRepository.SaveChanges();
return RedirectToAction(nameof(Index));

}

[HttpPost]

public IActionResult Edit(BrewerEditViewModel brewerEditViewModel) {
Brewer brewer = _brewerRepository.GetBy(brewerEditViewModel.BrewerlId);
MapBrewerEditViewModelToBrewer (brewerEditViewModel, brewer);
_brewerRepository.SaveChanges();
return RedirectToAction(nameof(Index));

}

@’ commit Add functionality Brewer - Create

HoGent Dia 110

THE

BEERHALL

Delete - GET

Delete

» De pagina geeft de naam van de brewer weer en
vraagt om een bevestiging

» De gebruiker kan bevestigen, of kan annuleren

» Ook hier zullen we weerom een GET en een POST
hebben

o Golden rule: waneer gegevens worden aangepast, of
verwijderd, op de server, maken we steeds gebruik van
eenzelfde URL en voorzien we een GET en een POST versie
voor de action method. Zo kan de aanpassing/verwijdering
niet gebeuren door het volgen van een link...

HoGent Dia 112

Delete [GET] - Controller

» URL: .../Brewer/Delete/4

public IActionResult Delete(int id) {

2 ACt|On methOd throw new NotImplementedException();

o de controller dient enkel de naam van de brewer door te
geven aan de view, dit kan via ViewData gebeuren

public IActionResult Delete(int id) {
ViewData[nameof(Brewer.Name)] = _brewerRepository.GetBy(id).Name;

return View();

HoGent

Dia 113

Delete [GET] - View

» een eenvoudige view kan volstaan

Brewers

Please confirm you want to delete brewer De Graal...

@{
}

ViewData["Title"] = "Brewers";

<h2>@ViewData["Title"]</h2>

<h4>Please confirm you want to delete brewer @ViewData["Name"]..</h4>

<form asp-action="Delete" method="post">
<div>

<button class="btn btn-primary" type="submit">Delete</button>
<a asp-action="Index" class="btn btn-default">Cancel
</div>
</form>

HoGent

Dia 114

THE

BEERHALL

Delete - POST

Delete [POST] - Controller

» Delete [POST]

o Controller verantwoordelijkheden
- de gegevens van het formulier ontvangen
* controleren of de gegevens geldig zijn

- het domein en de repositories aansturen
- de brewer moet verwijderd worden

- de controller redirect naar de Index pagina

HoGent Dia 116

Delete [POST] - Controller

» Delete [POST]

[HttpPost, ActionName("Delete")§—

public IActionResult DeleteConfirmed(int id) {
_brewerRepository.Delete(_brewerRepository.GetBy(id));
_brewerRepository.SaveChanges();

return RedirectToAction(nameof(Index));

binnen een klasse kunnen geen twee
methodes met identieke signatuur
bestaan,

de actionmethod in deze klasse
geven we een andere naam,
DeleteConfirmed, maar voor MVC
blijft dit de action method Delete

» Delete [POST]
= Controller verantwoordelijkheden

/ - de gegevens van het formulier ontvangen
- controleren of de gegevens geldig zijn

controle en reactie als iets
verkeerd loopt komt aan

A\ 4

- het domein en de repositories aansturen
* de brewer moet verwijderd worden
- de controller redirect naar de Index pagina

bod in een volgend
hoofdstuk

commit Add functionality Brewer - Delete

HoGent

Dia 117

THE

BEERHALL

5. Layouts

» De meeste websites bieden een consistente lay-out

aan over de verschillende pagina’s heen

o typische elementen in zo’n lay-out zijn header, navigation of
menu, footer

o scripts en stylesheets, ook dikwijls gebruikt door meerdere

pagina’s van een site, kunnen opgenomen worden in een lay-

out

» De lay-out voorziet in sections. Zo kunnen pagina’s, die
gebruik maken van de lay-out, op specifieke plaatsen
inhoud plaatsen

HoGent

Layouts reduce duplicate code in views, helping them
follow the Don’t Repeat Yourself (DRY) principle.

Dia 119

http://deviq.com/don-t-repeat-yourself/

5. Layouts

» Typische layout

N, -

Brewers

Add a brewer

Name Street Location

Bavik Rijksweg 33 8531 Bavikhove
Palm Breweries

Duvel Moortgat Breendonkdorp 28 2870 Puurs
InBev Brouwerijplein 1 3000 Leuven
Roman Hauwaart 105 9700 Oudenaarde
De Graal

De Leeuw

Total turnover: 20 500 000,00 €

© 2016 - Beerhall

Turnover
20.000.000.00 €
500.000.00 €

Left Navigation

Header

Footer

Content

Date established
26/12/1990

Detail | Edit | Delete
Detail | Edit | Delete
Detail | Edit | Delete
Detail | Edit | Delete
Detail | Edit | Delete
Detail | Edit | Delete
Detail | Edit | Delete

HoGent

Header/Navigation
— Content
— Footer
Dia 120

5. Layouts

» Het concept Layout kent 2 onderdelen

o Enerzijds zijn er de paginasjablonen waarin de layout website bepaald
wordt (in core mvc is dit standaard _layout.cshtml in de Views > Shared
map)
° In de pagina’s gebaseerd op een layout dien je enkel nog de inhoud te
plaatsen (= content page).

[Master page (MasterPage.master)

e ien ‘e Content page (Order.aspx)

w Halloween Superstore e :
e M| Content .".L.Z e e v &

% placeholder

Rendered page

De daadwerkelijke inhoud van een
pagina wordt gecombineerd met het
geselecteerd sjabloon.

Hierdoor bepaal je op 1 plaats hoe de
indeling van de website is, en krijgen alle

web pagina’s dezelfde indeling.

HoGent

Dia 12

5. Layouts

» _layout.cshtml in Views > Shared
o bevat HTML markup
« <html>, <head>, <body>, ...
o pbevat de gemeenschappelijke layout en inhoud
* header, footer, menu
o pbevat placeholders
* @RenderBody: de plaats waar de inhoud van de webpage komt

* @RenderScripts: de plaats waar de links voor de scripts van de
webpage komen

HoGent Dia 122

5 e Layo Uts ViewData[“Title”]: inhoud

van de title tag.

<!DOCTYPE html>

links naar de CSS

<html lang="en">

<head>
<meta charset="utf-8" />
<meta name="viewport" con ="width=device-width, initial-scale=1.0"
<title>@ViewData["Title"] - Beerhall</title>
<link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
<link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
<header>
<nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-white border-t
<div class="container">
Be
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target
aria-expanded="false" aria-label="Toggle navigation">

</button>
<div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-reverse">

<ul class="navbar-nav flex-grow-1"> . .
. bar-nav T.ex-g < Navigation
<li class="nav-item">
<a class="nav-link text-dark" asp-area="" asp-controller="Home" asp

</1i>

HoGent

Dia 123

5. Layouts

<a class="nav-link text-dark"” asp-area= asp-controller="Home'

</1i>

</div>
</div> De aang.eleverde content
</nav> wordt hier geplaatst
</header>

<div class="container">
<main role="main" class=
@RenderBody ()

</main>

links naar de scripts

</div>

<footer class="border-top footer text-muted">
<div class="container">
© 2019 - Beerhall - <a asp-area=
</div>
</footer>
<script src="~/lib/jquery/dist/jquery.min.js"></script>
<script src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"></script>
<script src="~/js/site.js" asp-append-version="true"></script>
@RenderSection("Scripts"”, required: false)

asp-controller="Home" asp-action="Priv:

</body> de aangeleverde
</html> i i
scripts worden hier

geplaatst

HoGent Dia 124

5. Layouts

» Hoe maken pagina’s gebruik van _Layout?
o _ViewsStart in map Views
 wordt uitgevoerd voor de rendering van elke pagina @{

. . . Layout = " _Layout";
* bevat de instructie om _Layout te gebruiken }
o VViewData[“title”]
« wordt gebruikt in _Layout at
ViewData["Title"] = "Brewers";

* in onze pagina kunnen we de ViewData ,
instellen

o De inhoud van onze pagina wordt geplaatst waar @RenderBody()
staat

HoGent Dia 125

5. Layouts

» Je kan ook zelf sections toevoegen aan de layout via
@RenderSection(“<section name>”, required)
o |let op: indien required true is zal er een exception geworpen
worden indien de section niet aangeleverd wordt

» Voorbeeld

© in de IayOUt pagEI <div id="footer">@RenderSection("footer")</div>
° in de view:
@{

}
<h2>@ViewData["Title"].</h2>

ViewData["Title"] = "Contact";

<address>
</address>

@section footer {
We provide a footer like this...

}
HoGent Dia 126

5. Layouts

» Je kan in de _Layout ook default content voorzien voor
een section

» Voorbeeld Layout

<div id="footer">
@if (IsSectionDefined("footer"))
{

}

else

{
}

</div>

@RenderSection("footer")

This is the default footer

HoGent Dia 127

5. Layouts

» CSS is standaard aanwezig in wwwroot > ¢ss map

° bevat o0.a. de opmaak van de site, er wordt naar verwezen in
_Layout

4 5@ wwwroot
b a0 css
P all js
4 5 lib
4 G bootstrap
4 5% dist
45 css
&[4 bootstrap.css
s bootstrap.css.map ‘<head>
&[4 bootstrap.min.css <meta charset="utf-8" />

5@) bootstrap.min.cssmap <meta name="viewport" content="width=device-width, initial-scale=1.e" />

r‘% R <title>@ViewData["Title"] - Beerhall</title>
ag.J bootstrap-grid.css.map

B e <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
5@ bootstrap-grid.min.css.map <link r*e|l= "stylesheet"” href="~/css/site.css" />
&[4 bootstrap-reboot.css < /head>
ué_j bootstrap-reboot.css.map
&[4 bootstrap-reboot.min.css
aé_j bootstrap-reboot.min.css.map

4 Gt js
a[] bootstrap.bundlejs
ab—[‘_j bootstrap.bundle.js.map
s bootstrap.bundle.minjs
aé_j bootstrap.bundle.minjs.map
a[] bootstrap.js
s bootstrapjs.map
a [T bootstrap.min,js
aé_j bootstrap.minjs.map

a[) LICENSE

jauery Dia 128

P&
P &1 jguery-validation

5. Layouts

» _Layout kan ook gebruikt worden om op consistente
manier meldingen weer te geven

Home About Contact

Voorbeeld: als de brouwer werd verwijderd wordt geredirect naar de
You successfully deleted brewer De Graal Index pagina en willen we de melding “You successfullly deleted

brewer <brewer name>" tonen. Analoog voor Edit en Create...

o merk op: dit kan niet via ViewData want deze is na elke request leeg en het prg
pattern resulteert in een post en een get request

» TempData

° via een cookie kan data bijgehouden worden over verschillende
HTTP requests

* TempData wordt geledigd zodra ze gelezen wordt in de View

* Als je TempData in de View wil gebruiken zonder ze te ledigen kan je
gebruik maken van Peek of Keep

* meer info op http://www.c-

sharpcorner.com/UploadFile/ansh06031982/using-tempdata-peek-and-
keep-in-Asp-Net-mvc/

HoGent

Dia 129

http://www.c-sharpcorner.com/UploadFile/ansh06031982/using-tempdata-peek-and-keep-in-Asp-Net-mvc/

5. Layouts

» TempData in _Layout

<div class="container">

<main role="main" class="pb-3">
@if (TempData["message"] != null) {
<div class="alert alert-success">@TempData["message"]</div>

}
@RenderBody ()

» TempData in Controller

[HttpPost, ActionName("Delete")]

public IActionResult DeleteConfirmed(int id) {
Brewer brewer = _brewerRepository.GetBy(id);
_brewerRepository.Delete(brewer);
_brewerRepository.SaveChanges();
TempData["message"] = $“You successfully deleted brewer {brewer.Name}.";
return RedirectToAction(nameof(Index));

dit doen we analoog voor Edit en Create

} commit Add success messages using TempData

HoGent

Exception handling ﬂ

W N

THE

BEERHALL

HoGent

6. Exceptionhandling in MVC

» Hoe kan de Controller exceptions op te vangen?

o TempData

- als een exception geworpen wordt bij het
verwijderen/wijzigen/creéren van een brewer wordt geredirect
naar de Index pagina en kunnen we een foutmelding meegeven in
TempData

o ModelState

- wanneer er iets fout loopt tijdens de model binding zal het
framework geen exception werpen maar de ModelState
aanpassen. Het is de verantwoordelijkheid van de controller om
deze te verifiéren en er gepast op te reageren

- als gegevens onvolledig zijn ingevuld kan de controller zorgen dat het

formulier opnieuw wordt aangeboden met de reeds ingevulde
gegevens

- deze vorm van validatie wordt in een later hoofdstuk behandeld

HoGent Dia 132

6. Exception handling

» Voorbeeld: afhandelen van exceptions via TempData

[HttpPost, ActionName("Delete")]
public IActionResult DeleteConfirmed(int id) {
Brewer brewer = null;
try {
brewer = _brewerRepository.GetBy(id);
_brewerRepository.Delete(brewer);
_brewerRepository.SaveChanges();
TempData["message"] = $“You successfully deleted brewer {brewer.Name}.";

}
catch {
TempData[“error"] = $"Sorry, something went wrong, brewer {brewer?.Name} was not deleted..";
}
return RedirectToAction(nameof(Index));
} BrewerController
@if (TempData["message"] != null) {
<div class="alert alert-success">@TempData["message"]</div>
}
@if (TempData["error"] != null) {
<div class="alert alert-warning">@TempData["error"]</div>
}
@RenderBody()

TempData

”qz!’L Catch exceptions and add error messages using

HoGent

6. Exceptionhandling in MVC

» Wat als een exception niet wordt opgevangen?

° development:

Environments, like “Development” and

“Production”, are a first-class notion in ASP.NET
Core and can be set using environment variables.

15 BrewerL

Editin Brew

27. return View(new BrewerEditViewdiodel(

ambda_method
/ Hand ! '

Hand L i r

public void Configure(..) {

if (env.IsDevelopment()) {
app.UseDeveloperExceptionPage();
app.UseBrowserLink();
}

else {
app.UseExceptionHandler("/Home/Error");

s
HoGent

exception page in de browser

- debug mode: exception wordt getoond op de lijn in broncode
waar exception geworpen werd

- without debugging: exception wordt getoond in de developer

An unhandled GXCE‘pUOﬂ Occurred

NullReferenceException: Object reference
.ctor in Brewereditviemiodel. cs, lin

StartUp.cs

not set to an

while processing the request.

nstance of an object.

Dia 134

6. Exceptionhandling in MVC

» Wat als een exception niet wordt opgevangen?
o production:

public void Configure(..) {

if (env.IsDevelopment()) {
app.UseDeveloperExceptionPage();
app.UseBrowserLink();

}

else {
app.UseExceptionHandler (" /Home/Error");

}

StartUp.cs

[Route("/Error")]
/public IActionResult Error() {
attribute based
routing

// Handle error here

} HomeController.cs

HoGent Dia 135

6. Exceptionhandling in MVC

» Exception Filters

o Action Filters zijn stukjes code die uitgevoerd worden net na
of net voor de uitvoering van een action methode of
ActionResult.

- Exception filters kunnen gebruikt worden om exceptions die

gebeuren tijdens controller instantiatie of model binding en niet
worden opgevangen af te handelen

 het uitvoeren van een filter kan worden ingesteld op niveau van actie
methode, controller of op application niveau

* maak bij voorkeur gebruik van de error handling middleware

- gebruik exception filters enkel wanneer foutafhandeling specifiek voor
een bepaalde action moet worden beschreven

* zie hoofdstuk MVC In Depth voor meer details over filters

HoGent Dia 136

Unit testen van de Controller

®

THE

BEERHALL

If it's worth building, it's
worth testing.

L2

HoGent

7. Unit testen voor Controller

» Unit testen maken geen gebruik van de database

o unit testen zijn isolated, ze moeten ook runnen als de
databank niet bereikbaar is...

° unit testen zijn snel...
o unit testen zijn repeatable...

HoGent Dia 138

7. Unit testen voor Controller

» Tijdens het unit testen kunnen we dummy repositories
injecteren in de controller...

o deze repositories kunnen gebruik maken van een dummy
DbContext

o de dummies bevatten een minimale implementatie
* i.e. enkel wat nodig is om de testen te runnen

public class DummyBrewerRepository : IBrewerRepository {

public DummyBrewerRepository(DummyApplicationDbContext dbContext) {
this.dbContext = dbContext;

}

public class DummyApplicationDbContext : DbContext {

}

HoGent

Dia 139

7. Unit testen voor Controller

» Unit testen met dummies...

public class BrewerControllerTest {
private BrewerController _controller;

public BrewerControllerTest() {
DummyApplicationDbContext dbContext = new DummyApplicationDbContext();
_controller = new BrewerController(new DummyBrewerRepository(dbContext),
new DummyLocationRepository(dbContext));

) /

public class BrewerController : Controller {
private readonly IBrewerRepository _brewerRepository;
private readonly IlLocationRepository _locationRepository;

public BrewerController(IBrewerRepository brewerRepository, IlLocationRepository locationRepository) {

_brewerRepository = brewerRepository;
_locationRepository = locationRepository;

HoGent Dia 140

7. Unit testen voor Controller

» Tijdens het unit testen kunnen we ook gebruik maken
van mocking

» Mock objecten zijn krachtiger dan dummy objecten
o Beschrijven hoe een object reageert op een call

- we hoeven geen volledige implementatie van de klasse te
voorzien

o Maakt verificatie van de calls mogelijk

- we kunnen vastleggen welke soort calls we kunnen verwachten,
welke parameters die calls moeten bevatten, in welke volgorde de
calls moeten gebeuren, hoeveel keer die calls moeten gebeuren...
* bv. bij testen van de Index methode uit BrewerController moet de

controller alle brewers ophalen: de methode GetAll() uit de
_brewerRepository moet 1 keer aangeroepen worden

HoGent

Dia 141

7. Unit testen voor Controller

» Mocking frameworks helpen ons om mock objecten
aan te maken
o Typemock, Rhino Mocks, Moq, ...
> Wij gaan gebruik maken van Mogq: https://github.com/Moq

test first. mock me later.

HoGent Dia 142

7. Unit testen voor Controller

» Installatie van Moq in het project Beerhall.Tests

Browse Installed

Moqg

Updates @

X - G D Include prerelease

‘B Moq @ by Daniel Cazzulino, kzu, 74,1M downloads

Moq is the most popular and friendly mocking framework for NET.

v4.13.0

F

NuGet Package Manager: Beerhall.Tests

Package source: |nuget.org ~ o3
e Moq @ & nugetorg

Version: ‘ Latest stable 4.13.0 < Install

dh

HoGent

Dia 143

7. Unit testen voor Controller

» Declaratie en instantiatie van de mocks Mock<Type> is een soort

proxyklasse

. Type is een interface, of
public class BrewerControllerTest {

° een concrete klasse
private BrewerController _controller; (enkel virtual methods
private Mock<IBrewerRepository> _brewerRepository; van de klasse kunnen

private Mock<ILocationRepository> _locationRepository; gemocked worden)

public BrewerControllerTest() {
_brewerRepository = new Mock<IBrewerRepository>(); <
_locationRepository = new Mock<ILocationRepository>();

Creatie van een instantie
van de Mock

_controller = new BrewerController(_brewerRepository.Object,
_locationRepository.Object);

}

.Object: een instantie
van het type die
gemocked wordt

HoGent Dia 144

7. Unit testen voor Controller

Index

» De unit testen voor Index

» De startpagina van Beerhall geeft een overzicht van
alle brouwers met mogelijkheid om nieuwe brouwers
aan te maken of bestaande te editeren of te
verwijderen.
> Controller verantwoordelijkheden

* alle nodige gegevens van alle brewers ophalen
* de juiste View selecteren en deze de nodige gegevens aanbieden

> De Index action method moet
- een geordende lijst van Brewers door geven aan de View
- de totale turnover via ViewData doorgeven

public void Index_PassesOrderedListOfBrewersInViewResultModelAndStoresTotalTurnoverInViewData()

o Elke test bevat
- Arrange: trainen van de Mock

* Act: uitvoeren van de methode
* Assert: Controleren van het resultaat

HoGent Dia 145

7. Unit testen voor Controller

» Trainen van de mocks

o we moeten aangeven hoe de mock objecten reageren op
methode aanroepen

o we moeten de mock enkel trainen voor de relevante
methodes
* Setup(x).Returns(y)
 Setup(x).Throws(z)

* x: de methode die je aanroept met zijn parameterwaarden
* y: wat de methode zal retourneren
 z: de exception die de methode dan zal retourneren

* Het trainen kan je in de constructor doen of in de testmethodes
zelf.

HoGent

Dia 146

7. Unit testen voor Controller

» Trainen van de mocks
o voorbeeld:

- de action method Index moet alle brewers uit de repository halen,
dit gebeurt via de methode GetAll()

* in de testmethode kunnen we de mock als volgt trainen

//Arrange

Brewer bavik = new Brewer("Bavik") { BrewerId = 1 };

Brewer moortgat = new Brewer("Duvel Moortgat") { BrewerId = 2 };
_brewerRepository.Setup(m => m.GetAll()).Returns(new List<Brewer>() {bavik, moortgat});

- wanneer de controller getAll() oproept zal deze call de lijst met de
brewers bavik en moortgat retourneren

- we kunnen expliciet nagaan of, en hoeveel keer, de methode
GetAll() werd aangeroepen

HoGent Dia 147

7. Unit testen voor Controller

» Act

- de action method Index moet worden uitgevoerd

//Act
IActionResult result = _controller.Index();

* |ActionResult is een interface met meerdere implementaties

* return View() viewy

Creates a ViewResult object that renders a view to the response.

public virtual ViewResult View()

Returns
ViewResult

The created ViewResult object for the response.

RedirectToAction(String)

Redirects to the specified action using the actionName.

* return RedirectToAction()

public virtual RedirectToActionResult RedirectToAction(string actionMame)

Parameters

actionName System.String
The name of the action.

Returns

H O G e n t RedirectToActionResult
The created RedirectToActionResult for the response.

Dia 148

® DQ Beerhall - Microsoft Visual Studio.
File Edit | View | Project Build Debug Team Tools 4
Q- R1 Solution Explorer Ctrl+Alt+L
® 2% Team Explorer Ctrl+p, Ctrl+M
p— E Screr Explorer Ctrl+Alt+S
Object Brows
[SQL Server Object Explorer Ctrl+p, Ctrl+S
Browse: | My
"3 Bookmark Window Ctrl+K, Ctrl+W
% Call Hierarchy
4 53’5‘:“ #2 Class View Cirls Shift= C
P % M B Code Definition Window Ctrlep, D
° b % Ce
b 4z Co .= Document Outline
} ‘ I 0 n e s u b % Cr &1 Object Browser CtriAlt+)
PO e s Crleps, E
b & Dz
[> Outout Cirl+Alt+ O

o maak gebruik van de Object Browser (of de online help) om
0@ in detail te zien wat er voorzien is in klassen...

Browse: My Solution T | €} | ='-l| 103 "| &
[ActionResult

sl Microsoft.AspMetCore.Mvc |ActionResult i ExecuteResultbsync(Microsoft. AspMetCore.Mvc. ActionContext)

& Microsoft.AspMetCore.Mvc.Internal Object

public interface lActionResult
Member of Micresoft.AspMNetCore.Mvc

Summary:
Defines a contract that represents the result of an action method.

HoGent Dia 149

7. Unit testen voor Controller

» ViewResult
° |s een implementatie van IActionResult.

@ ExecuteResultdsynciMicrosoft. AspMNetCore Mvc Action Context)

Microsoft. AspMetCore.Mve ViewResult. Viend @ ViewResult()

Microsoft. AspMetCore.Mvc ViewFeatures.In & ContentType

I"-.-'1icru:usu:uft.ﬁlspl'\letCu:ure.Mvc.‘u‘imFeatures.lnI & Model Gets the View Data Model

Beerhall.Tests.Controllers. BrewerControllerTy & StatusCode

Microsoft. AspMetCore.Mve. PartialViewResu & TempData

Microsoft. AspMetCore.Mve.PartialViewResu & ViewData Gets or sets the

Microsoft.AspNetCore.Mve, ViewFeatures.In & ViewEngine Microsoft.AspNetCore.Mvc.ViewFeatures.ViewDataDictionary for this result.
Micru:usu:uft.hspl'\.letCu:ure.Mvc.‘u‘imFeatures.lnI & Viewhame

public class ViewResult : Microsoft.AspMetCore.Mvc.ActionResult
Member of Microsoft.AspNetCore.Mvc

Summary:
Represents an Microsoft.AspMetCore.Mvc. ActionResult that renders a view to the response.

HoGent Dia 150

7. Unit testen voor Controller

» RedirectToActionResult

° |s een implementatie van IActionResult.

Microsoft.AspMetCore.Mve. Redirect ToActionResult [
Microsoft. AspMetCore.Mve. RedirectToActionResult.Re o
Microsoft. AspMetCore.Mve. RedirectToActionResult.Re 1 RedirectToAction
Microsoft.AspMetCore.Mvc.Internal.RedirectToActionR & ActionMName
Microsoft.AspMetCore.Mve.Internal.RedirectToActionR & ControllerMame
& Permanent
& RouteValues
& UrlHelper

ExecuteResult{Microsoft. AspMetCore. Myvc ActionContext)
RedirectToActionResult(string, string, object)

cult{string, string, chiect hool)

Gets or sets the name of the action to use for generating the URL.

Gets or sets the name of the controller to use for generating the URL.

Gets or sets the route data to use for generating the URL.

public class RedirectToActionResult . Microsoft. AspMetCore.Mvc. ActionResu
Member of Microsoft. AspMNetCore.Mve

HoGent

Dia 151

7. Unit testen voor Controller

» Act

* de action method Index retourneert dus een ViewResult

//Act

var result = Assert.IsType<ViewResult>(_controller.Index());

» Assert : controleert of property Model van ViewResult lijst
van Brewers bevat, en Viewdata correct werd ingevuld

//Assert

var brewersInModel = Assert.IsType<List<Brewer>>(result.Model);

Assert.
Assert.
Assert.
Assert.

Assert.

HoGent

Equal(3, brewersInModel.Count);

Equal("Bavik", brewersInModel[©].Name);

Equal("De Leeuw", brewersInModel[1].Name);
Equal("Duvel Moortgat", brewersInModel[2].Name);
Equal (20050000, result.ViewData["TotalTurnover"]);

Dia 152

7. Unit testen voor Controller

» Gebruik en verificatie van de mocks

o voorbeeld:

- de testmethode Edit_ValidEdit_... bevat het trainen van een moq
en de verificatie na de act.

public void Edit_ValidEdit_UpdatesAndPersistsBrewerAndRedirectsToActionIndex() {
_brewerRepository.Setup(m => m.GetBy(1)).Returns(_dummyContext.Bavik);
var brewerEvm = new BrewerEditViewModel (_dummyContext.Bavik)

{

Street "nieuwe straat 1"

}s

var result

Assert.IsType<RedirectToActionResult>(_controller v, 1)),
var bavik = _dummyContext.Bavik;

Assert.Equal("Index", result?.ActionName);
Assert.Equal("Bavik", bavik.Name); &

Assert.Equal("nieuwe straat 1", bavik.Street);

_brewerRepository.Verify(m => m.SaveChanges(), Times.Once());

M,
} <-\ ‘thky
hier gaan we na of de methode SaveChanges() exact

HOGent 1 keer werd aangeroepen

7. Unit testen voor Controller

» Gebruik van een DummyContext

o de concrete repositories maken gebruik van een
ApplicationDbContext

o we kunnen een DummyApplicationDbContext voorzien
- deze stellen we zo op dat ze al onze nodige testgevallen bevat

- we hoeven zo geen uitgebreide initialisatie code opnemen in de
testmethodes of in de constructor van de testklasse

- we denken aan het Don’t Repeat Yourself principe...

public class BrewerControllerTest {
private BrewerController _controller;
private Mock<IBrewerRepository> _brewerRepository;
private Mock<ILocationRepository> _locationRepository;
private DummyApplicationDbContext _dummyContext;

public BrewerControllerTest() {
_dummyContext = new DummyApplicationDbContext();
_brewerRepository = new Mock<IBrewerRepository>();
_locationRepository = new Mock<ILocationRepository>();

controller = new BrewerController(_brewerRepository.Object, _locationRepository.Object);
} Dia 154

7. Unit testen voor Controller

» Gebruik van een DummyContext
o onze testmethode kan er nu als volgt uit zien

[Fact]
public void Index_PassesOrderedListOfBrewersInViewResultModelAndStoresTotalTurnoverInViewData() {
_brewerRepository.Setup(m => m.GetAll()).Returns(_dummyContext.Brewers);
var result = Assert.IsType<ViewResult>(_controller.Index());
var brewersInModel = Assert.IsType<List<Brewer>>(result.Model);
Assert.Equal(3, brewersInModel.Count);
Assert.Equal("Bavik", brewersInModel[@].Name);
Assert.Equal("De Leeuw", brewersInModel[1].Name);
Assert.Equal("Duvel Moortgat", brewersInModel[2].Name);
Assert.Equal(20050000, result.ViewData["TotalTurnover"]);

HoGent Dia 155

Focus on Mocking

» Trainen van een mock

o Enkele voorbeelden
* Alle brouwers retourneren

_brewerRepository.Setup(m => m.GetAll()).Returns(_dummyContext.Brewers);

* Brouwer metid 1

_brewerRepository.Setup(m => m.GetBy(1l)).Returns(_dummyContext.Bavik);

* Onbestaande brouwer. (Mock retourneert null indien niet
getraind voor een bepaald geval, maar je kan hier ook een regel
voor maken). Als de methode null retourneert, moet je de null
casten naar het juiste type

_brewerRepository.Setup(m => m.GetBy(10)).Returns((Brewer) null);

HoGent Dia 156

Focus on Mocking

» Trainen van een mock, vervolg
- Als de methode void retourneert heb je geen Returns

_brewerRepository.Setup(m => m.Add(new Brewer("TestBrewer")));

* Als de methode een exception throwt, gebruik Throws

_brewerRepository.Setup(m => m.Add(null)).Throws<ArgumentNullException>();

HoGent Dia 157

Focus on Mocking

» Verificatie van een mock

> nagaan of de dependent klasse volgens een verwacht patroon
gebruikt wordt

// Method should be called with specified parameter
mock.Verify(foo => foo.Execute("ping“))

// Method should never be called
mock.Verify(foo => foo.Execute("ping"), Times.Never());

// Called at least once
mock.Verify(foo => foo.Execute("ping"), Times.AtLeastOnce());

// Verify setter invocation of property Name, regardless of value.
mock.VerifySet(foo => foo.Name);

// Verify setter called with specific value
mock.VerifySet(foo => foo.Name ="foo");

// Mocking for a range of values
mock.VerifySet(foo => foo.Value = It.IsInRange(1, 5, Range.Inclusive));

HoGent Dia 158

Focus on Mocking

» Generischer maken van setup

o |t: laat toe om matching conditie op te geven
> Enkele mogelijkheden:

//IsAny<T> matches if parameter is any instance of type T
mock.Setup(foo => foo.Execute(lt.IsAny<string>())).Returns(true);

// 1s<T> matches based on a specified predicate
mock.Setup(foo => foo.Add(It.Is<int>(i => i % 2 == 0))).Returns(true);

// 1sinRange<T> matches if parameter is between the defined values
mock.Setup(foo => foo.Add(It.IsinRange<int>(0, 10, Range.Inclusive))).Returns(true);

// |sRegex : matches a string parameter if it matches the specified regular expression
mock.Setup(x => x.Execute(It.IsRegex("[a-d]+", RegexOptions.lgnoreCase))).Returns("foo");

meer info? Zie: https://github.com/Moqg/moq4/wiki/Quickstart

HoGent Dia 159

7. Unit testen voor Controller

» De action methods die gebruik maken van TempData

verdienen speciale aandacht

o de property TempData (van het type ITempDataDictionary)

voor de controller moet ingesteld worden

o we kunnen dit oplossen met een mock voor TempData

public class BrewerControllerTest {
private BrewerController _controller;
private Mock<IBrewerRepository> _brewerRepository;
private Mock<ILocationRepository> _locationRepository;
private DummyApplicationDbContext _dummyContext;
public BrewerControllerTest() {
_dummyContext = new DummyApplicationDbContext();
_brewerRepository = new Mock<IBrewerRepository>();
_locationRepository = new Mock<ILocationRepository>();
_controller = new BrewerController(_brewerRepository.Object,
_locationRepository.Object){
_controller.TempData = new Mock<ITempDataDictionary>().0bject;

}

HoGent

Dia 160

7. Unit testen voor BrewerController

» Wat verwac
» Wat verwac
» Wat verwac
» Wat verwac
» Wat verwac
» Wat verwac

nten we van de Edit-Get methode?
hten we van de Edit-Post methode?
nten we van de Create-Get methode?
nten we van de Create-Post methode?
nten we van de Delete-Get methode?

nten we van de Delete-Post methode?

commit Add unit tests for BrewerController

HoGent

Dia 161

THE

BEERHALL

uitbreiden van de
applicatie

8. Oefening

» Werk BeerHall verder uit zodat
o je voor een brouwer de lijst van bieren kunt tonen
- ~detail pagina
° je een nieuw bier aan een brouwer kunt toevoegen
° je een bier van een brouwer kunt verwijderen

HoGent Dia 163

THE

BEERHALL

extra’s

| IENUMERABLE |

9. Extra’s: Het type IQueryable =i

In de namespace System.Ling vind je IQueryable<T>

o dit kan ook gekozen worden als het returntype voor onze rep05|tory
methodes die IEnumerable retourneren IQueryable<Brewer>

o hoe verschillen deze twee collections?

* IEnumerable<T>: aanvullingen (include, where, orderby,....) worden
uitgevoerd in het geheugen

DATABASE
CLIENT

F@
w

IENUMERAELE

ALL
RECORDS

* lQueryable<T>: aanvullingen (include, where, orderby,....) worden uitgevoerd
in de database, i.e. ze breiden de query verder uit

IQUERYABLE -
CLIENT
. >

ONLY REQUIRED

RECORDS SENT

HoGent Dia 165

| IENUMERABLE |

9. Extra’s: Het type IQueryable |l

Repository

» IQueryable

public IQueryable<T> FindAll()

{
return _objectSet.Where(e => e.Id > 0);
}
public IEnumerable<T> FindAllAsEnumerable()
{
return _objectSet.Where(e => e.Id > 0);
h
Controller Generated queries
public ViewResult Index() SELECT
{ [Extenti]. [Id] 3\5 [Ic[I].]
_ . . Extentl Name] AS [Name],
var model ‘= _repository ERUINIEM EExtenu Emreoate] AS [HireDate]

.OrderBy(e => e.HireDate);] | [zpon [dbo] . [Emsﬂoyees] AS [Extenti]
0

return View(model); ERE [Extenti].[Id]
¥ ER BY [Extenti].[HfreDate] ASC
public ViewResult Index()
{ SELECT

var model = _repository.FindAllAsEnumerable() Extent1i]. [Id] AS [Id],

L U L

.OrderBy(e => e.le‘eDate)J EXtentll [Name] AS [Name],

|- Take(10); FROM [dbo]. [Employees] AS [Extenti]

HERE [Extentll.] [Id] >
HoGent Dia 266. 166

return View(model);[

9. Extra’s: EF: AsNoTracking

Tracking vs. No-Tracking e

Tracking behavior controls whether or not Entity Framework Core will keep information about an entity instance in its change
tracker. If an entity Is tracked, any changes detected in the entity will be persisted to the database during savechanges() .

Entity Framework Core will also fix-up navigation properties between entities that are obtained from a tracking query and

entities that were previously loaded into the DbContext instance.

» Per default worden alle queries die entities retourneren
getracked

» Je kan de performantie verbeteren door voor read-only
gueries expliciet aan te geven dat de entities niet hoeven
getracked te worden...

public IEnumerable<Brewer> GetAll() {
return _brewers.Include(b =» b.Location).Include(b => b.Beers).AsNoTracking().TolList();

h

voorbeeld van de GetAll met AsNoTracking in de BrewerRepository

HoGent Dia 167

9. Extra’s: EF Logging

» Soms is het handig te zien welke queries EF genereert,
zo kan je bv. de performantie in het oog houden
o zie https://docs.microsoft.com/nl-

nl/aspnet/core/fundamentals/logging?tabs=aspnetcore2x om logging
te voorzien

o of maak gebruik van SQL Server Profiler

HoGent Dia 168

https://docs.microsoft.com/nl-nl/aspnet/core/fundamentals/logging?tabs=aspnetcore2x

9. Extra’s: Good practice - Controller

» Controllers bevatten geen business logica
o hiervoor delegeert de controller naar het domein

o voorbeeld: in een action method moeten we alle bieren van
een bepaald type voor een bepaalde brouwer ophalen

- Slechte oplossing :

public ActionResult Bieren(int brouwerid, string type) {
Brouwer b = brouwerRepository.GetBy(brouwerid);

return View(b.Bieren.Where(b=>b.Type==type).ToList());
}

 Pas Law of Demeter toe in MVC
* Vermijd . . notatie (is in Ling heel eenvoudig)

HoGent Dia 169

9. Extra’s: Good practice - Controller

» Controllers bevatten geen business logica
o voorbeeld vervolg, een tweede slechte oplossing:

public ActionResult Bieren(int brouwerid, string type) {

Ienumerable<Bier> bieren= bierenRepository.GetBy(brouwerid);

return View(bieren.Where(b=>b.Type==type).ToList());}

- Gebruik enkel repositories voor het ophalen van het root object!
- ophalen van geassocieerde objecten gebeurt via het domein!

HoGent Dia 170

9. Extra’s: Good practice - Controller

» Controllers bevatten geen business logica
o voorbeeld vervolg, een goede oplossing:

public ActionResult Bieren(int brouwerid, string type) {
Brouwer b = brouwerRepository.GetBy(brouwerid);

return View(b.GetBieren(type));}

» Merk op: ook Views bevatten geen businesslogica
o presenteren enkel data

» Pas design patterns toe in je ontwerp

HoGent Dia 171

THE

BEERHALL

ref

10. Referenties

» ASP.NET Core Fundamentals by Scott Allen — Pluralsight cursus -

https://app.pluralsight.com/library/courses/aspdotnet-core-fundamentals/table-
of-contents

» Building a Web App with ASP.NET CORE, MVC 6, EF Core, and Angular by Shawn
Wildermuth — Pluralsight cursus -

https://app.pluralsight.com/library/courses/aspnetcore-mvc-efcore-bootstrap-
angular-web/table-of-contents

» Pro ASP.NET Core MVC: Seveth edition by Adam Freeman - Apress
Softcover ISBN 978-1-4842-3149-4
eBook ISBN 978-1-4842-3150-0

» Micrsoft documentatie
o https://docs.microsoft.com/nl-nl/aspnet/index#tpivot=core&panel=core overview
o https://www.asp.net/freecourses
o https://docs.microsoft.com/en-us/ef/core/

HoGent Dia 173

https://app.pluralsight.com/library/courses/aspdotnet-core-fundamentals/table-of-contents
https://app.pluralsight.com/library/courses/aspnetcore-mvc-efcore-bootstrap-angular-web/table-of-contents
https://docs.microsoft.com/nl-nl/aspnet/index#pivot=core&panel=core_overview
https://www.asp.net/freecourses
https://docs.microsoft.com/en-us/ef/core/

