
https://github.com/WebIII/08thBeerhallMvcCRUD.git

1. Inleiding

2. Domain Model

3. DAL : Repository pattern

4. De MVC Applicatie Bierhalle
◦ De Controller

◦ Index: Controller

◦ Index: View

◦ Index: Extra vraag van de gebruiker

◦ Create GET/POST: Controller

◦ Create GET/POST: View

◦ Edit GET/POST: Controller

◦ Edit GET/POST: View

◦ Delete GET/POST: Controller

◦ Delete GET/POST: View

5. Layouts

6. Exceptionhandling in MVC

7. Unit testen van de Controller
◦ Depencency injection

◦ Mocking

8. Oefeningen

9. Enkele extra’s

10. Referenties

Dia 2

 Een eerste data-driven MVC applicatie

 Bedoeling
◦ Volledige CRUD voor brouwers

 TDD van het Domein (zoals in hoofdstuk 3)

 Controller

 Interacties met de databank gebruik makend van EF en Linq

 Aanmaken van de Views

 Web-helpers

 Communicatie View – Controller via Viewmodels

◦ Unit testen van Controller: DI en Mocking

Dia 3

Dia 4

 ASP.NET MVC framework

1 234

Dia 5

 Use Case

Dia 6

Use Case : Beheer brouwers

Actor : administrator

Precondities : actor is ingelogd als administrator. Brouwer gegevens zijn beschikbaar.

Postcondities : administrator heeft gegevens brouwers bekeken, eventueel de gegevens van
een brouwer aangepast, een brouwer toegevoegd of een brouwer verwijderd.

Normale verloop:

1. Systeem geeft een overzicht van de brouwers (naam, gemeente, omzet) en de
mogelijkheid om een brouwer te editeren, te verwijderen of een nieuwe brouwer toe te
voegen

2. Herhaal

1. Administrator kiest om brouwer te editeren

2. Systeem geeft de gegevens van de brouwer weer : brouwernr, naam, straat,
postcode, gemeente, omzet

3. Administrator wijzigt de gegevens van de brouwer

4. Systeem valideert de gegevens en slaat deze op in de database

5. Systeem geeft melding dat de gegevens gewijzigd zijn

Alternatieve scenario’s :

2.1.1a Administrator wenst een brouwer te creëren

1. Systeem biedt de mogelijkheid om te gegevens in te geven : naam, straat, postcode, omzet

2. Administrator geeft de gegevens in

3. Naar 2.1.4

2.3.a Administrator wenst de gegevens niet te wijzigen

1. Terug naar 2

2.3.b De administrator wenst een brouwer te verwijderen

1. Systeem vraagt om bevestiging

2. Actor bevestigt

3. Systeem verwijdert de brouwer uit de database

4. Systeem geeft melding. Terug naar 1

2.3.b.1.a. Systeem detecteert dat brouwer bieren bevat.

1. Systeem geeft melding dat de brouwer niet kan verwijderd worden zolang hij bieren heeft.
Terug naar 2

2.4.a Systeem detecteert dat niet alle gegevens correct ingevuld zijn : naam verplicht, omzet > 0 als
ingevuld.)

1. Systeem geeft melding. Terug naar 2.3

Dia 7

Dia 8

Welcome to the

 Als administrator wil ik…
◦ Brouwers kunnen toevoegen

◦ Brouwers kunnen wijzigen

◦ Brouwers kunnen verwijderen

◦ Brouwers kunnen raadplegen

 Als klant wil ik…
◦ Alle bieren kunnen raadplegen

◦ Bieren kunnen toevoegen aan mijn winkelmandje

◦ De inhoud van mijn winkelmandje kunnen bestellen

Dia 10

CRUD

 Als administrator wil ik…
◦ Brouwers kunnen creëren en toevoegen

◦ Brouwers kunnen wijzigen

◦ Brouwers kunnen verwijderen

◦ Brouwers kunnen raadplegen

 Als klant wil ik…
◦ Alle bieren kunnen raadplegen

◦ Bieren kunnen toevoegen aan mijn winkelmandje

◦ De inhoud van mijn winkelmandje kunnen bestellen

Dia 11

 De start: aanmaken van een nieuw project
◦ Template: Visual C# - .NET Core

◦ ASP.NET Core Web Application > Web Application (Model-
View-Controller) > “Beerhall”

 Merk op in dit project gebruiken we geen authenticatie

Dia 12

het domein

 We nemen een deel van de domeinlaag over uit H7
Entity Framework

 Klassen toevoegen in Beerhall - Models - Domain

Dia 14

 Inspecteer de domeinklassen Brewer, Beer, Location

 Inspecteer de testklassen BrewerTest, BeerTest
◦ run de testen…

commit Add domain layer including unit tests

1 234


Dia 15

de datalaag

 We maken gebruik van EF Core als ORM-tool.

 Installeer de nuget package
Microsoft.EntityFrameworkCore.SqlServer

Dia 17

 Stap 2 – DbContext klasse & Initializer
◦ ApplicationDbContext.cs

 erft van DbContext

 DbSets voor Brewer en Location

 Beer zullen we enkel via Brewer benaderen, enkel voor de aggregate
roots maken we DbSets aan

 Mappers voor Brewer, Beer en Location

Merk op

- in de console applicatie in hfstk 07 werd in deze klasse de configuratie verzorgd.

- deze ApplicationDbContext klasse bevat geen override voor de methode OnConfiguring, de
configuratie gebeurt nu in de StartUp klasse (zie verderop)

- deze manier van werken vereist wel een constructor in onze ApplicationDbContext die de constructor
van de base klasse aanroept:

public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options) : base(options)
{

}

A provider can be configured
by overriding the
DbContext.OnConfiguring
method or by using
AddDbContext on the
application service provider.
If AddDbContext is used, then
also ensure that your
DbContext type accepts a
DbContextOptions<TContext>
object in its constructor and
passes it to the base
constructor for DbContext.

Dia 18

 Stap 2 – DbContext klasse & Initializer
◦ BeerhallDataInitializer.cs

 het initializeren van de DB gebeurt telkens bij de opstart van de
applicatie

 we voorzien een constructor dewelke de ApplicationDbContext
binnenkrijgt

 methode voor initialisatie: InitializeData(), deze maakt gebruik van
de ApplicationDbContext

 we maken gebruik van de drop create strategy, de DB wordt
gedropped en gecreëerd bij elke run:

 EnsureDeleted()

 EnsureCreated()

Dia 19

 Stap 2 – DbContext klasse & Initializer
◦ BeerhallDataInitializer.cs… vervolg

 InitializeData()

 bevat de seeding: statements om data toe te voegen aan de
context/DB

public static void InitializeData() {

_dbContext.Database.EnsureDeleted();

if (_dbContext.Database.EnsureCreated()) {

Location bavikhove = new Location { Name = "Bavikhove", PostalCode = "8531" };

Location roeselare = new Location { Name = "Roeselare", PostalCode = "8800" };

Location puurs = new Location { Name = "Puurs", PostalCode = "2870" };

Location leuven = new Location { Name = "Leuven", PostalCode = "3000" };

Location oudenaarde = new Location { Name = "Oudenaarde", PostalCode = "9700" };

Location affligem = new Location { Name = "Affligem", PostalCode = "1790" };

Location[] locations =

new Location[] { bavikhove, roeselare, puurs, leuven, oudenaarde, affligem };

_dbContext.Locations.AddRange(locations);

_dbContext.SaveChanges();

….

Dia 20

Merk op

- deze Drop/Create strategie is handig tijdens development daar je bij het opstarten van de applicatie steeds
werkt met een verse databank die de gewenste data bevat; zo kunnen vooropgestelde scenario’s steeds
gemakkelijk getest worden

 Stap 3 – Configuratie
◦ Program.cs

 entry point voor de applicatie, bevat de Main methode

 in die Main methode wordt

 een WebHost gebouwd en de Run() methode aangeroepen om de
webapplicatie te runnen

 tijdens het bouwen van de WebHost wordt, onder andere,
appsettings.json toegevoegd als bron voor configuratie

 de configuratie wordt doorgegeven aan de StartUp klasse

Startup(…)

ConfigureServices(…)

Configure (…)

StartUp.cs

Dia 21

 Stap 3 – Configuratie
◦ StartUp.cs

 tijdens constructie wordt de configuratie doorgegeven

 het framework roept de methode ConfigureServices aan

 configuratie van services die nodig zijn voor de applicatie

 wij willen dat onze ApplicationDbContext en onze
BeerhalldataInitializer als een service beschikbaar worden in de
applicatie

 het framework roept de methode Configure aan

 configuratie van de request pipeline

 wij kunnen op dit punt onze databank initialiseren

Startup(…)

ConfigureServices(…)

Configure (…)

StartUp.cs

Dia 22

 Stap 3 – Configuratie
◦ StartUp.cs – de constructor

 public Startup(IConfiguration configuration)

 het template voorziet in een constructor met 1 parameter die via DI wordt
geïnjecteerd, deze parameter bevat de configuratie voor je applicatie

 de configuratie wordt beschikbaar via de Configuration property

public Startup(IConfiguration configuration)

{

Configuration = configuration;

}

public IConfiguration Configuration { get; }

Startup(…)

ConfigureServices(…)

Configure (…)

StartUp.cs

Dia 23

Dia 24

 Stap 3 – Configuratie
◦ StartUp.cs - ConfigureServices(IServiceCollection services)

 services is ASP.NET’s built in IoC container

 de types die beheerd worden door deze IoC container noemen we
services

 standaard wordt reeds een service die door het framework wordt
voorzien toegevoegd: AddControllersWithViews

 je kan je eigen types toevoegen aan deze container om ze later te
kunnen gebruiken bij bv. constructor injectie

 er zijn 3 opties voor de lifetime van een service

https://docs.asp.net/en/latest/fundamentals/dependency-injection.html

Startup(…)

ConfigureServices(…)

Configure (…)

StartUp.cs

Dia 25

 At a high level, the goal of Dependency Injection is that a class (e.g. the golfer) needs
something that satisfies an interface (e.g. IClub). It doesn't care what the concrete type is
(e.g. WoodClub, IronClub, WedgeClub or PutterClub), it wants someone else to handle that
(e.g. a good caddy). The Service container allow you to register your dependency logic.

 IServiceCollection bevat extension methods

◦ Add*ServiceName* om services van een MVC applicatie te registeren, zoals bvb
AddControllersWithViews

◦ AddScoped : om een abstract type te mappen naar een concrete service, die dan per
request geinstantieerd wordt als een object er om vraagt.

◦ …

Strategy

Pattern

Dia 26

 Stap 3 – Configuratie
◦ StartUp.cs - ConfigureServices(IServiceCollection services)

 invulling voor onze applicatie:

 we registreren de ApplicationDbContext als een service

 we gaan de context niet zelf instantiëren, we laten dit over aan de IoC
container; als een klasse nood heeft aan de context kan deze via de
constructor geïnjecteerd worden

 EF voorziet hiervoor in de AddDbContext methode

 via de options parameter kunnen we specifieren welke fysische DB
zal gebruikt worden

 UseSqlServer(connectionString)

 de connectionstring hebben we gedefinieerd in appsettings.json

appsettings.json bevat configuratie
informatie voor de applicatie, in de ctor
StartUp werd deze json file toegevoegd aan
Configuration

de default lifetime
bij AddDbContext
is scoped

Startup(…)

ConfigureServices(…)

Configure (…)

StartUp.cs

Dia 27

 Stap 3 – Configuratie
◦ StartUp.cs - ConfigureServices(IServiceCollection services)

 invulling voor onze applicatie (vervolg):

 we registreren de BeerhallDataInitializer als een service

 in een volgende stap wordt duidelijk waarom we dit doen (injectie in
Configure method)

Startup(…)

ConfigureServices(…)

Configure (…)

StartUp.cs

services.AddScoped<BeerhallDataInitializer>();

services die gebruik maken van de EF
dbContext service declareer je met een
lifetime die dezelfde is als die van de
dbContext, nl. scoped

Dia 28

 Stap 3 – Configuratie vervolg

◦ StartUp.cs - Configure(…)

 wordt aangeroepen door de runtime, ná de methode
ConfigureServices(…)

 de services (zoals bv. onze BeerhallDataInitializer) zijn dus reeds
geregistreerd en kunnen geinjecteerd worden in deze methode

 standaard worden reeds IApplicationBuilder (verplicht) en
IWebHostEnvironment geïnjecteerd

Startup(…)

ConfigureServices(…)

Configure (…)

StartUp.cs

Dia 29

 Stap 3 – Configuratie vervolg

◦ StartUp.cs - Configure(…) vervolg

 we gaan zorgen dat onze Db bij de start van de applicatie
geinitialiseerd wordt:

 injectie van de BeerhallDataInitializer

 aanroep naar InitializeData(…)

public void Configure(IApplicationBuilder app, IWebHostEnvironment env, BeerhallDataInitializer beerhallDataInitializer) {
…

app.UseEndpoints(endpoints =>
{

endpoints.MapControllerRoute(
name: "default",
pattern: "{controller=Home}/{action=Index}/{id?}");

});

beerhallDataInitializer.InitializeData();
}

Startup(…)

ConfigureServices(…)

Configure (…)

StartUp.cs

Dia 30

 Run de applicatie en inspecteer de gegenereerde
databank
◦ bekijk de inhoud van de tabellen

◦ bekijk het ontwerp van de tabellen

◦ je kan hiervoor gebruik maken van

 SQL Server Management Studio, of werken via

 Server Explorer in Visual Studio

commit Configure EF and add database initialization

Dia 31

de repositories

 Het is de Controller die met de persistentielaag zal
communiceren voor de CRUD
◦ Controller kan hiervoor rechtstreeks communiceren met een

instantie van ApplicationDbContext…

public ActionResult Index(){}

public ActionResult Create(…){}

public ActionResult Edit(…){}

public ActionResult Delete(…){}

DbContext
SQL Server

Database

BrewerController

Dia 33

 Nadelen :
◦ Unit testen van de controller.

 Unit testen werken niet rechtstreeks met databases (te traag, niet
geisoleerd, niet repeatable…)

◦ Sterke koppeling Controller – DbContext

 je hebt een dependency op EntityFramework in de controller

Dia 34

 Door het toepassen van het repository pattern, en
dependency injection zullen we een unit testable
controller maken die geen dependency heeft op Entity
Framework …

Dia 35

 Repository pattern

 Creëert een abstractie laag tussen de Controller en de Data laag.

 De repository gedraagt ​​zich als een in-memory lijst van objecten
waarin we objecten kunnen toevoegen, verwijderen en updaten.

 Voordelen:
 Isoleert de toepassing van wijzigingen in de data opslag

 Het maakt ook de toegang tot de gegevens beter testbaar. (TDD)

P of EAA: Repository. (n.d.). Retrieved August 19, 2014, from http://martinfowler.com/eaaCatalog/repository.html

Dia 36

http://martinfowler.com/eaaCatalog/repository.html

 Repository pattern

Dia 37

Implementing the Repository and Unit of Work Patterns in an ASP.NET MVC Application (9 of 10) | The ASP.NET Site. (n.d.).

Retrieved August 19, 2014, from http://www.asp.net/mvc/tutorials/getting-started-with-ef-5-using-mvc-4/implementing-the-

repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application

http://www.asp.net/mvc/tutorials/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application

 Repository pattern
◦ Maak een interface, dan kan je later de concrete implementatie

injecteren.
◦ Een typische repository interface bevat enkel wat nodig is voor de

CRUD.
◦ Meestal heb je minstens volgende 5 methodes :

 Geef alle, eventueel met bijkomende zoekmogelijkheden (GetAll)

 Geef één aggregate by id (primary key) (GetBy)

 Voeg een nieuwe aggregate toe aan de repository (Add)

 Verwijder een aggregate van de repository (Delete)

 Opslaan van de wijzigingen (Save)

◦ MERK OP: Je hebt geen wijzig methode
 Reden: de repository moet bij de Save opdracht zelf in staat zijn om te

detecteren welke objecten gewijzigd zijn en de nodige aanpassingen in
de databank doorvoeren

Dia 38

 Repository pattern
◦ In onze applicatie

 Brewers kunnen opvragen, creëren, wijzigen, verwijderen

 => IBrewerRepository

 Alle locations kunnen opvragen, 1 location kunnen opvragen

 => ILocationRepository

 We moeten niet rechtstreeks Beers kunnen opvragen

 we zullen in het domein via Brewer de Beers kunnen opvragen

Dia 39

 Repository pattern - IBrewerRepository
◦ Een typische repository interface

 conventie: interfaces starten met I

 merk op, dit behoort tot de Beerhall.Models.Domain namespace

namespace Beerhall.Models.Domain {

public interface IBrewerRepository {

Brewer GetBy(int brewerId);

IEnumerable<Brewer> GetAll();

void Add(Brewer brewer);

void Delete(Brewer brewer);

void SaveChanges();

}

}

Opm: void Delete (int brewerId) is ook mogelijk

Dia 40

 Repository pattern - ILocationRepository
◦ we zullen geen locaties moeten kunnen toevoegen of

verwijderen

 daar we enkel read-operaties hebben is er geen nood aan een
SaveChanges() methode

namespace Beerhall.Models.Domain {

public interface ILocationRepository {

Location GetBy(string postalCode);

IEnumerable<Location> GetAll();

}

}

Dia 41

 Implementatie van de repository
◦ De implementatie van de interface is onderdeel van de Data

laag

◦ In deze klassen hebben we een dependency op EF, data wordt
opgehaald via Linq queries

 Maak een nieuwe klasse BrewerRepository aan in Data
> Repositories folder
◦ Erf van IBrewerRepository

◦ Je kan automatisch de methodes van de interface
implementeren via VS

Dia 42

 Implementatie van de repository
◦ maak gebruik van constructor injectie om de DbContext te

injecteren

◦ schrijf LINQ queries om de data op te halen

 we maken gebruik van eager loading

 je moet expliciet aangeven welke data je wil ophalen

 indien je bij GetAll() enkel de DbSet Brewers retourneert heb je geen
toegang tot de Beers die bij een Brewer behoren

 bv. op de index pagina willen we voor elke Brewer het aantal Beers dat
er gebrouwen wordt tonen: Include(b => b.Beers)

 bv. bij elke Brewer wordt ook de Location getoond: Include(b =>
b.Location)

EF Core ondersteunt ook lazy loading. Bij lazy loading zou je wel toegang hebben tot de Beers die
bij een Brewer behoren, ook al retourneert de repository enkel de DbSet<Brewer>. EF zou ze de
Beers voor jou ophalen wanneer je ernaar refereert. Het is belangrijk dat je weet in welke loading
strategieën je ORM tool voorziet en welke je wil gebruiken… Een groot nadeel van lazy loading is
de zware belasting van de DB server die de performantie fel doet dalen…

Dia 43

public class BrewerRepository : IBrewerRepository {

private readonly ApplicationDbContext _dbContext;

private readonly DbSet<Brewer> _brewers;

public BrewerRepository(ApplicationDbContext dbContext) {

_dbContext = dbContext;

_brewers = dbContext.Brewers;

}

public Brewer GetBy(int brewerId) {

return _brewers.SingleOrDefault(b => b.BrewerId == brewerId);

}

public IEnumerable<Brewer> GetAll() {

return _brewers.Include(b => b.Location).ToList();

}

public void Add(Brewer brewer) {

_brewers.Add(brewer);

}

public void Delete(Brewer brewer) {

_brewers.Remove(brewer);

}

public void SaveChanges() {

_dbContext.SaveChanges();

}

}

Indien er nood is aan andere methodes kan deze repository
uitgebreid worden. Zo zal het, indien nodig, bijvoorbeeld efficiënter
zijn een methode

public IEnumerable<Brewer>
GetBrewersEstablishedBefore(DateTime established)

te voorzien in de repository. Deze zal enkel de gevraagde brewers
uit de databank halen.

Indien je niet in deze methode voorziet moet de client van deze
repository een GetAll() aanroepen. Deze retourneert dan alle
brewers, en deze moeten nadien door de client gefilterd worden
met een Where clause…

Dia 44

 Implementatie van de repository - vervolg
◦ maak gebruik van info uit analyse/ontwerp om te bepalen

welke includes noodzakelijk zijn

◦ creëer indien nodig extra methodes volgens de behoeften…

Dia 45

public class BrewerRepository : IBrewerRepository {

…

public Brewer GetBy(int brewerId) {

return _brewers.SingleOrDefault(b => b.BrewerId == brewerId);

}

public IEnumerable<Brewer> GetAll() {

return _brewers.Include(b => b.Location).ToList();

}

public Brewer GetByWithBeers(int brewerId) {

return _brewers.Include(b => b.Beers).SingleOrDefault(b => b.BrewerId == brewerId);

}

public IEnumerable<Brewer> GetAllWithBeers() {

return _brewers.Include(b => b.Location).Include(b => b.Beers).ToList();

}

…

}

Voorbeeld extra methodes GetByWithBeers en
GetAllWithBeers

namespace Beerhall.Models.Data.Repositories {

public class LocationRepository : ILocationRepository {

private readonly DbSet<Location> _locations;

public LocationRepository(ApplicationDbContext dbContext) {

_locations = dbContext.Locations;

}

public Location GetBy(string postalCode) {

return _locations.SingleOrDefault(l => l.PostalCode == postalCode);

}

public IEnumerable<Location> GetAll() {

return _locations.ToList();

}

}

}

Dia 46

commit Add repositories

1 234
 

Dia 47

Dia 49

 Routing, Controller en Action Method
◦ Url Routing System: handelt requests af

 MVC infrastructuur dat binnenkomende HTTP requests analyseert. Het
gebruikt segmenten van de URL om een specifieke controller te
instantiëren en daarbinnen een specifieke action method aan te roepen.

◦ Controller: is een klasse met methodes
 publieke action methods handelen de logica van de request af

 via model binding kan informatie van de request via parameters
doorgegeven worden aan een action method

 Best Practice : 1 Controller/Use case

◦ Action Method: voert de door de client gevraagde request uit
 communiceert met de domein laag

 communiceert met de DAL

 bepaalt de response
 bv. vraagt aan View om een model(data) weer te geven

Dia 50

 Routing, Controller en Action Method

Dia 51

 Maak de BrewerController aan
◦ Rechtsklik op de map “Controllers” > Add > Controller…
◦ Kies MVC Controller Class, geef naam BrewerController > Add

 Pas de routing aan zodat de Brewer/Index de Start
pagina wordt

Dia 52

Index

 De startpagina van Beerhall geeft een overzicht van
alle brouwers met mogelijkheid om nieuwe brouwers
aan te maken of bestaande te editeren of te
verwijderen.
◦ Controller verantwoordelijkheden

 alle nodige gegevens van alle brewers ophalen

 de juiste View selecteren en deze de nodige gegevens aanbieden

◦ View verantwoordelijkheden

 de gegevens mooi presenteren

Dia 54

 De BrewerController communiceert met de
BrewerRepository in de DAL laag voor het ophalen van
de brewers
◦ MVC framework zal de BrewerController instantiëren

◦ we maken gebruik van constructor injectie om de
BrewerRepository te injecteren in de BrewerController

 we moeten eerst de repository toevoegen aan de IoC container,
zie StartUp.cs, methode ConfigureServices(…)

public void ConfigureServices(IServiceCollection services) {

…

services.AddScoped<IBrewerRepository, BrewerRepository>();

…

}

services die gebruik maken van de EF
dbContext service declareer je met een
lifetime die dezelfde is als die van de
dbContext, nl. scoped

Dia 55

 nu kan de BrewerController de BrewerRepository
gebruiken…

public class BrewerController : Controller {

private readonly IBrewerRepository _brewerRepository;

public BrewerController(IBrewerRepository brewerRepository) {

_brewerRepository = brewerRepository;

}

}

Dia 56

 … en kan de Index action methode geïmplementeerd
worden
namespace Beerhall.Controllers {

public class BrewerController : Controller {

private readonly IBrewerRepository _brewerRepository;

public BrewerController(IBrewerRepository brewerRepository) {

_brewerRepository = brewerRepository;

}

public IActionResult Index() {

IEnumerable<Brewer> brewers = _brewerRepository.GetAll();

return View(brewers);

}

}

}

de gegevens die doorgegeven worden aan
de view, deze komen in de Model property
van de ViewResult

de action method retourneert een
ViewResult

Dia 57

1 234
 

Dia 58

 Onze View moet de data die de controller aanlevert
weergeven in een HTML pagina.

 Het bevat geen business logica! Het plaatst enkel de
aangeleverde data op de juiste plaats in de HTML
pagina.
◦ data aangeleverd via ViewData

◦ data aangeleverd via Model

 De view bevat een mix van C# en HTML
◦ Razor

◦ Taghelpers

Dia 59

 Maak een folder Brewer aan in de folder Views

 Maak een view genaamd Index aan in die folder
◦ we volgen de conventies: alle views voor de BrewerController

stoppen we in een submap van Views genaamd Brewer

◦ het resultaat is een cshtml bestand Index

 merk op: later zullen we gebruik maken van scaffolding en zal er
reeds veel voor ons automatisch gegenereerd worden

Dia 60

 Specificatie van het model voor de view: @model
◦ op deze manier krijgen we voor de instantie die wordt

doorgegeven strong type checking en intellisense in de view

@model IEnumerable<Beerhall.Models.Domain.Brewer>

public class BrewerController : Controller {

…

public IActionResult Index() {

IEnumerable<Brewer> brewers =
_brewerRepository.GetAll();

return View(brewers);

}

}

zorg dat het aangegeven type overeenkomt
met het type dat doorgegeven wordt!

Dia 61

 Inhoud: gebruik van Model voor het overzicht

<table class="table table-striped table-condensed table-bordered">
<tr>

<th>Name</th>
<th>Street</th>
<th>Location</th>
<th class="text-right">Turnover</th>
<th class="text-right">Date established</th>
<th></th>

</tr>

@foreach (var item in Model) {
<tr>

<td>@item.Name</td>
<td>@item.Street</td>
<td>@item.Location?.PostalCode @item.Location?.Name</td>
<td class="text-right">@(item.Turnover?.ToString("c") ?? "-")</td>
<td class="text-right">@(item.DateEstablished?.Date.ToString("d") ?? "-")</td>
<td>

<a asp-controller="Brewer" asp-action="Detail" asp-route-id="@item.BrewerId">Detail |
<a asp-controller="Brewer" asp-action="Edit" asp-route-id="@item.BrewerId">Edit |
<a asp-controller="Brewer" asp-action="Delete" asp-route-id="@item.BrewerId">Delete

</td>
</tr>

}
</table>

gebruik van Model

anchor tag helpers, tag helpers worden verderop in dit hoofdstuk toegelicht

Dia 62

 Inhoud: via ViewBag of ViewData de Title aanleveren
voor de _Layout pagina
◦ standaard wordt de _Layout pagina gebruikt, deze wordt

verderop in dit hoofdstuk in detail toegelicht…

@{
ViewData["Title"] = "Brewers";

}

<head>

<meta charset="utf-8" />

<meta name="viewport" content="width=device-width, initial-scale=1.0" />

<title>@ViewData["Title"] - BeerhallMVC</title>

…

</head>
stukje uit _Layout

onze view moet dit
aanleveren

Dia 63

@model IEnumerable<Beerhall.Models.Domain.Brewer>

@{
ViewData["Title"] = "Brouwers";

}

<h2>@ViewData["Title"]</h2>

<p>
<a asp-controller="Brewer" asp-action="Create">Voeg een nieuwe brouwer toe

</p>

<table class="table table-striped table-condensed table-bordered">
<tr>

…
</tr>

@foreach (var item in Model) {
<tr>

…
</tr>

}
</table>

 Inhoud: en zo valt de puzzel in elkaar
Index.cshtml

Dia 64

<div class="container body-content">
@RenderBody()
<hr />
<footer>

<p>© 2016 - BeerhallMVC</p>
</footer>

</div> stukje uit _Layout

 Aanpassen view om de totale omzet van de brouwers
samen te tonen
◦ de view berekent de totale omzet niet, anders trek je business

logica binnen in de view

◦ de controller kan de totale omzet aanleveren via de ViewData

 via het Model wordt de lijst van brewers aangeleverd

 via ViewData wordt de totale omzet aangeleverd
public IActionResult Index() {

IEnumerable<Brewer> brewers = _brewerRepository.GetAll().OrderBy(b=>b.Name).ToList();

ViewData["TotalTurnover"] = brewers.Sum(b => b.Turnover);

return View(brewers);

} BrewerController.cs

Index.cshtmlDia 65

@model IEnumerable<Beerhall.Models.Domain.Brewer>

…

<table class="table table-striped table-condensed table-bordered">
…
</table>
<p>Total turnover: @($"{(int)ViewData["TotalTurnover"]:C}")</p>

1 234
 

we kunnen nu verder werken aan de rest van
de CRUD operaties…

commit Add functionality Brewer - Index

Dia 66

Edit - GET

 De pagina geeft een formulier met alle gegevens van
de brewer die we wensen te editeren

 De gebruiker kan editeren en de gewijzigde gegevens
bewaren, of het editeren annuleren

gebeurt via HTTPGETgebeurt via HTTPPOST

Dia 68

 Edit [GET]
◦ Controller verantwoordelijkheden

 alle nodige gegevens van de gewenste brewer ophalen

 de juiste view selecteren en deze de gegevens aanbieden

◦ View verantwoordelijkheden

 de gegevens presenteren zodat gebruiker kan editeren, bewaren
of annuleren

Dia 69

 de controller krijgt via de parameter id de nodige
informatie binnen van de view Index

<td>

<a asp-controller="Brewer" asp-action="Detail" asp-route-id="@item.BrewerId">Detail |

<a asp-controller="Brewer" asp-action="Edit" asp-route-id="@item.BrewerId">Edit |

<a asp-controller="Brewer" asp-action="Delete" asp-route-id="@item.BrewerId">Delete

</td>

app.UseMvc(routes => {

routes.MapRoute(

name: "default",

template: "{controller=Brewer}/{action=Index}/{id?}");

});

Index.cshtml

Routing configuratie in
StartUp.cs

public IActionResult Edit(int id) {

throw new NotImplementedException();

}

Edit action method in
BrewerController

Dia 70

 … de controller kan zo de gewenste brewer uit de repository ophalen

 deze brewer kan nu doorgegeven worden aan de view, maar we gaan
gebruik maken van een ViewModel

 een viewmodel heeft als specifieke doel de gewenste data aan
te leveren voor een view
◦ het viewmodel zal enkel en alleen die properties van onze

domeinobjecten bevatten, die nodig zijn in de view
 als bv. DateEstablished geen deel uitmaakt van de edit view zal het geen

deel uitmaken van ons viewmodel
 overposting is nu niet meer mogelijk

◦ het viewmodel kan mogelijks een combinatie van properties van
verschillende domeinklassen bevatten

public IActionResult Edit(int id) {

Brewer brewer = _brewerRepository.GetBy(id);

…

}

Dia 71

 de viewmodels stoppen we in een submap van Models
genaamd ViewModels

 de naam van het viewmodel geeft aan voor welke view
het zal dienen: BrewerEditViewModel

using Beerhall.Models.Domain;

namespace Beerhall.Models.ViewModels {
public class BrewerEditViewModel {

public string Name { get; set; }
public string Street { get; set; }
public string PostalCode { get; set; }
public int? Turnover { get; set; }

public BrewerEditViewModel(Brewer brewer)
{

Name = brewer.Name;
Street = brewer.Street;
PostalCode = brewer.Location?.PostalCode;
Turnover = brewer.Turnover;

}
}

}

We zullen een dropdownlist maken met alle gemeenten in,
wanneer de gebruiker een gemeente selecteert zal de unieke
postalcode naar de conrtoller gestuurd worden

Constructor ontvangt domeinobject(en) en bouwt
het viewmodel

Merk op dat alle setters publiek zijn, via input velden
in de view zal de waarde kunnen aangepast worden

Dia 72

 de controller geeft nu het viewmodel door aan de
view…

public IActionResult Edit(int id) {

Brewer brewer = _brewerRepository.GetBy(id);

return View(new BrewerEditViewModel(brewer));

}

Dia 73

 let op: om het viewmodel aan te maken hebben we
nood aan de Postalcode die in Location zit, we moeten
er voor zorgen dat als we de brewer ophalen, we ook
zijn location ophalen, even checken in de
BrewerRepository…

public class BrewerRepository : IBrewerRepository {

…

public Brewer GetBy(int brewerId) {

return _brewers.Include(b => b.Location).SingleOrDefault(b => b.BrewerId == brewerId);

}

…
}

aanpassing in BrewerRepository

Dia 74

EF – Eager Loading

public class BrewerEditViewModel {
…
public string PostalCode { get; set; }
…

public BrewerEditViewModel(Brewer brewer)
{

…
PostalCode = brewer.Location?.PostalCode;
…

}
}

 we kunnen nu de view Edit.cshtml aanmaken in de
map Views > Brewer

@model Beerhall.Models.ViewModels.BrewerEditViewModel
@{

ViewData["Title"] = "Edit brewer";
}
<h2>@ViewData["Title"]</h2>

<form asp-action="Edit" method="post">
<div class="form-group">

<label asp-for="Name"></label>
<input asp-for="Name" class="form-control" />

</div>
<div class="form-group">

<label asp-for="Street"></label>
<input asp-for="Street" class="form-control" />

</div>
<div class="form-group">

<label asp-for="PostalCode"></label>
<input asp-for="PostalCode" class="form-control" />

</div>
<div class="form-group">

<label asp-for="Turnover"></label>
<input asp-for="Turnover" class="form-control" />

</div>
<div>

<button class="btn btn-primary" type="submit">Save</button>
<a asp-action="Index" class="btn btn-default">Cancel

</div>
</form> Edit.cshtml

Er wordt standaard gebruik gemaakt van Bootstrap

Dia 75

 vereenvoudigen het werk om HTML pagina’s op de
server te genereren
◦ onderdeel van de .cshtml views, Razor markup

◦ very HTML-like, met IntelliSense

◦ werken in op HTML elementen

 ~element name

 ~attribute name

 ~parent tag

 MVC Core bevat een aantal voorgedefinieerde tag
helpers

 Je kan eenvoudig je eigen tag helpers ontwikkelen in
C#

Dia 76



◦ tag helpers moeten expliciet toegevoegd worden aan een
view

◦ standaard wordt dit gedaan in _ViewImports die in de map
Views zit

 de inhoud van _ViewImports heeft effect op alle views in de
folder waarin het is geplaatst, alsook de subfolders daarvan

 standaard kan je dus op elke view gebruik maken van TagHelpers,
tenzij je op een view gebruik maakt van @removeTagHelper

 een ander typisch gebruik van _ViewImports is de declaratie van
@using

 zo vermijd je het herhalen van @using in verschillende views

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Dia 77

 voorbeeld anchor tag helper

List brewers

de taghelper zal de
generatie van een
<a> element
bepalen

<a asp-action="Index" asp-controller="Brewer" class="btn btn-
default">List brewers

de naam van de
action method die
zal aangeroepen
worden

de naam van de
controller die zal
gebruikt worden

klassiek attribuut,
verwijzend naar
Bootstrap klassen

gegenereerde HTML

Dia 78

in de routing (zie StartUp –
Configure) is Brewer als de
default-controller en Index
als de default-action
gedefinieerd…

http://localhost:1800/

 voorbeeld form tag helper

◦ genereert en stelt het action-attribuut in voor een action method in een
controller of een benoemde route

 gebruik asp-controller attribuut om controller te selecteren

 hier niet gespecifieerd, neemt huidige controller: Brewer

 gebruik asp-action attribuut om action method in te stellen

 hier expliciet ingesteld op Edit

 gebruik asp-route-<parameter name> attribuut om extra parameters toe te
voegen aan de route

 hier niet gespecifieerd, enkel de huidige route-value: id = 1

◦ genereert een hidden request verification token om cross-site request forgery
te kunnen voorkomen

 meer hierover in een volgend hoofdstuk

◦ values

<form asp-action="Edit" method="post">

<form method="post" action="/Brewer/Edit/1">
…

<input name="__RequestVerificationToken" type="hidden" value="CfDJ8OIHYFYge0dPrEOE92DFCD-
E2HfdMSFjtD8taub8hS6Lr88XKs0aiE6iQfMS9Ds4KVgmvMPKrr9_g6IUjWeUb4B1IugDrvkDjOct_p0An0T7Uhpecvu3-Inqb71d6lO-
2W9pEvKkRdKfXMVn8jWTY0E" />
</form>

gegenereerde HTMLDia 79

 voorbeeld input tag helper
◦ in de form op de Brewer – Edit view vinden we

◦ asp-for zorgt voor de generatie van een id en name attribuut
gebaseerd op de property “TurnOver”

◦ asp-for stelt het type attribuut in gebaseerd op het type van
de Property

<input asp-for="Turnover" class="form-control" />

dit is de naam van een property van
BrewerEditViewModel die doorgegeven
werd aan deze view

gegenereerde HTML

Dia 80

<input class="form-control"

type="number" id="Turnover"

name="Turnover" value="20000000" />

 in een volgend hoofdstuk gaan we data annotaties
gebruiken en zal de kracht van tag helpers nog
duidelijker worden…

https://docs.asp.net/en/latest/mvc/views/tag-helpers/index.html

Dia 81

Dia 82

 aanpassen van de view: we willen de gebruiker een
dropdownlist aanbieden voor het editeren van de
locatie
◦ de controller kan alle locaties ophalen en aanleveren via

ViewData, hiervoor heeft de controller nood aan de
LocationRepository: constructor injectie

public void ConfigureServices(IServiceCollection services) {

…

services.AddScoped<ILocationRepository, LocationRepository>();

…

}

aanpassing in StartUp.cs

public class BrewerController : Controller {

private readonly IBrewerRepository _brewerRepository;

private readonly ILocationRepository _locationRepository;

public BrewerController(IBrewerRepository brewerRepository, ILocationRepository locationRepository) {

_brewerRepository = brewerRepository;

_locationRepository = locationRepository;

}

…

}

aanpassing in BrewerController.cs

 aanpassen van de view: dropdownlist vervolg
◦ SelectList is het aangewezen type om de lijst van locaties aan

te leveren aan de view
public class SelectList : Microsoft.AspNetCore.Mvc.Rendering.MultiSelectList

Member of Microsoft.AspNetCore.Mvc.Rendering

Summary:

Represents a list that lets users select a single item. This class is typically rendered as an HTML <select> element with the
specified collection of Microsoft.AspNetCore.Mvc.Rendering.SelectListItem objects.

public IActionResult Edit(int id) {

Brewer brewer = _brewerRepository.GetBy(id);

ViewData["Locations"] = new SelectList(

_locationRepository.GetAll().OrderBy(l => l.Name),

nameof(Location.PostalCode),

nameof(Location.Name));

return View(new BrewerEditViewModel(brewer));

}

aanpassing in BrewerController.cs

zie API of VS Object browser

IEnumerable van items

bij selectie wordt de
waarde van deze
property geretourneerd

de waarde van deze
property wordt
getoond in de dd-list

Dia 83

 aanpassen van de view: dropdownlist vervolg
◦ de view gebruikt de ViewData

◦ de select tag helper helpt om de dropdownlist te genereren

…

<div class="form-group">

<label asp-for="PostalCode"></label>

<select asp-for="PostalCode" asp-items="@(ViewData["Locations"] as SelectList)" class="form-
control">

<option value="">-- select location --</option>

</select>

</div>

…

aanpassing in Edit.cshtml

Wanneer de location van een brewer niet gekend is wordt “-- select
location --” getoond in de dropdownlist

de select tag helper

Dia 84

Edit - POST

 Edit [POST]
◦ Controller verantwoordelijkheden

 de gegevens van het formulier ontvangen

 controleren of de gegevens geldig zijn

 het domein en de repositories aansturen

 de brewer moet gewijzigd worden volgens de formuliergegevens

 de gewijzigde brewer moet gepersisteerd worden

 indien alles goed verloopt moet de controller redirecten naar de
Index pagina

 indien er iets verkeerd loopt moet de controller het formulier
terug aanbieden

Dia 86

 Edit [POST]
◦ de formulier gegevens worden met een HTTP Post request

meegestuurd

◦ deze HTTP Post request wordt afgehandeld door een nieuwe
action method

◦ via MVC model binding zullen de formulier gegevens als
parameter aan deze action method aangeleverd worden

[HttpPost]

public IActionResult Edit(BrewerEditViewModel brewerEditViewModel, int id) {

throw new NotImplementedException();

}

via dit attribuut kunnen we aangeven dat deze action method de
HTTP Post Edit request zal afhandelen

model binding zal zorgen dat de formuliergegevens in deze
parameter terecht komen

Dia 87

 Merk op
◦ we hebben eenzelfde URL (bv. …/Edit/1) maar twee action

methods dewelke, afhankelijk van de HTTP verb zullen
worden aangeroepen

 get – aanbieden van een formulier met initiële gegevens

 post - verwerken van de formuliergegevens die werden
teruggezonden

◦ indien je een aparte URL neemt voor de post (bv. …/Save/1)
dan zal

 deze URL gebruikt worden wanneer gebruikers formuliergegevens
opnieuw moeten invullen

 kunnen gebruikers deze URL bookmarken, met mogelijks nare
gevolgen…

Dia 88

Dia 89

double post problem

Post/Redirect/Get (PRG) is a web development design pattern that prevents some duplicate form submissions, creating a more intuitive interface for user

agents (users). PRG supports bookmarks and the refresh button in a predictable way that does not create duplicate form submissions.

When a web form is submitted to a server through an HTTP POST request, a web user that attempts to refresh the server response in certain user agents

can cause the contents of the original HTTP POST request to be resubmitted, possibly causing undesired results, such as a duplicate web purchase.[1]

To avoid this problem, many web developers use the PRG pattern[2] — instead of returning a web page directly, the POST operation returns a redirection

command. The HTTP 1.1 specification introduced the HTTP 303 ("See other") response code to ensure that in this situation, the web user's browser can

safely refresh the server response without causing the initial HTTP POST request to be resubmitted. However most common commercial applications in use

today (new and old alike) still continue to issue HTTP 302 ("Found") responses in these situations.

The PRG pattern cannot address every scenario of duplicate form submission. Some known duplicate form submissions that PRG cannot solve are:

• If a web user refreshes before the initial submission has completed because of server lag, resulting in a duplicate HTTP POST request in certain user

agents.

double post problem solved with
PRG-pattern

https://en.wikipedia.org/wiki/Web_development
https://en.wikipedia.org/wiki/Design_pattern
https://en.wikipedia.org/wiki/Form_(web)
https://en.wikipedia.org/wiki/User_agent
https://en.wikipedia.org/wiki/Internet_bookmark
https://en.wikipedia.org/wiki/Post/Redirect/Get#Duplicate_form_submissions
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/POST_(HTTP)
https://en.wikipedia.org/wiki/Purchasing
https://en.wikipedia.org/wiki/Post/Redirect/Get#cite_note-1
https://en.wikipedia.org/wiki/Post/Redirect/Get#cite_note-2
https://en.wikipedia.org/wiki/HTTP_303
https://en.wikipedia.org/wiki/HTTP_302
https://en.wikipedia.org/wiki/Lag

 Model binding
◦ Laat ons kijken hoe de gegevens van

het formulier de controller bereiken

de broncode van …/Brewer/Edit/5

de waarden van de name attributen
van de input velden zijn belangrijk

voor model binding…

Dia 90

 Model binding
◦ … de gebruiker klikt op

In de request body vinden we de Form Data: een
lijst van key/value pairs,

key: naam attribuut van het input field

value: de waarde die werd ingevoerd Dia 91

 Model binding in actie
MVC gaat een BrewerEditViewModel

instantiëren,

keys uit de form data matchen met de
properties van de instantie,

en de values gebruiken om waarden aan
die properties toe te kennen

[HttpPost]

public IActionResult Edit(BrewerEditViewModel brewerEditViewModel, int id) {

throw new NotImplementedException();

}

public class BrewerEditViewModel {
public string Name { get; set; }
public string Street { get; set; }
public string PostalCode { get; set; }
public int? Turnover { get; set; }
…

}

Dia 92

 Model binding in actie
◦ Om te kunnen instantiëren moet BrewerEditViewModel een

default/parameterloze constructor hebben!

 dit moeten we nog toevoegen, er wordt een run-time exception
geworpen als deze niet aanwezig is…

◦ Om waarden aan de properties te kunnen toekennen moeten
de properties publieke setters hebben

 dit is reeds ok public class BrewerEditViewModel {
public string Name { get; set; }
public string Street { get; set; }
public string PostalCode { get; set; }
public int? Turnover { get; set; }

public BrewerEditViewModel() {
}

public BrewerEditViewModel(Brewer brewer) : this() {
Name = brewer.Name;
Street = brewer.Street;
PostalCode = brewer.Location?.PostalCode;
Turnover = brewer.Turnover;

}}

Dia 93

 De Edit [POST] action method implementatie
◦ de controller kan nu met brewerEditViewModel aan de slag…

[HttpPost]
public IActionResult Edit(BrewerEditViewModel brewerEditViewModel, int id) {

Brewer brewer = _brewerRepository.GetBy(id);
brewer.Name = brewerEditViewModel.Name;
brewer.Street = brewerEditViewModel.Street;
brewer.Location = brewerEditViewModel.PostalCode == null ? null

:_locationRepository.GetBy(brewerEditViewModel.PostalCode);
brewer.Turnover = brewerEditViewModel.Turnover;
_brewerRepository.SaveChanges();
return RedirectToAction(nameof(Index));

}

het is belangrijk de veranderingen te
persisteren!


komt aan bod in een

volgend hoofdstuk

Dia 94

commit Add functionality Brewer - Edit

Dia 95

Model binding in ASP.NET Core MVC
maps data from HTTP requests to action

method parameters. The parameters
may be simple types such as strings,

integers, or floats, or they may be
complex types. This is a great feature of
MVC because mapping incoming data to

a counterpart is an often repeated
scenario, regardless of size or complexity
of the data. MVC solves this problem by
abstracting binding away so developers
don’t have to keep rewriting a slightly
different version of that same code in

every app. Writing your own text to type
converter code is tedious, and error

prone.

https://docs.asp.net/en/latest/mvc/models/model-binding.html#how-model-binding-works

Dia 96

 er zijn verschillende manieren waarop gegevens van de
client kunnen doorgegeven worden

◦ Form values

◦ Route values

◦ Query strings

de model binder zal in deze
volgorde aangereikte gegevens

proberen te binden

Dia 97

 Form values
◦ gegevens zitten in de HTTP POST request

◦ dit kunnen primitieve types zijn

 die op basis van parameter_name gebonden worden

 voorbeeld: een alternatieve action method voor Brewer Edit
[POST]

[HttpPost]
public IActionResult Edit(int id, string name, string street, string postalCode, int? turnover) {

…
}

Dia 98

 Form values, vervolg
◦ dit kunnen complexe types (klassen zijn)

 de Brewer Edit [POST] was hier een voorbeeld van

 model binding kan ook met nog meer complexe types

 wanneer een klasse properties heeft die op zich weer klassen zijn zal
via reflectie, en op een recursieve manier, de structuur doorlopen
worden en op basis van parameter_name.property_name binding
gerealiseerd worden

 model binding kan ook met collections

 binding kan gebeuren op basis van parameter_name[index] (of
kortweg [index]), of

 op basis van parameter_name[key] (kortweg [key]) voor bv. dictionary
types

Dia 99

 Route values
◦ gegevens zitten in een benoemd URL segment

◦ de definitie van de routing is hier belangrijk

 namen van segmenten in MapRoute komen overeen met namen
van parameters van de action method

 we gebruikten dit in de Brewer Edit [GET]

 zie anchor tag helper, asp-route-<parameter name> attribuut

voorbeeld van een gegenereerde
URL: …/Brewer/Edit/5

Dia 100

 Query strings
◦ gegevens zitten in een query string deel van de URL

 de query string bevat de naam=waarde paren die als basis voor de
binding dienen

 voorbeeld

<form asp-action="Search" method="get">
<div class="form-group">

Search for <input type="search" name="searchString"
class="form-control" />

</div>
<div>

<button class="btn btn-primary" type="submit">Search</button>
</div>

</form>

public IActionResult Search(string searchString) {

…

}

“mvc core model binding”

Dia 101

Create - GET

 De pagina geeft een formulier waarop alle gegevens
van een brewer kunnen ingevuld worden
◦ dit formulier is analoog aan het edit-formulier

 De gebruiker kan de gegevens bewaren (i.e. de brewer
aanmaken), of kan annuleren

 Ook hier zullen we weerom
◦ een GET en een POST hebben

◦ gebruik maken van het PRG pattern

Dia 103

 URL: …/Brewer/Create

 Action method

◦ de controller zal de view gebruiken die we voor Edit hebben
gemaakt

 er moet een leeg brewerEditViewModel doorgegeven worden als
model

 de lijst met locations moet doorgegeven worden via de ViewData

 dit deden we reeds voor Edit, we kunnen deze code hergebruiken

 refactor time: we extraheren dit stukje code in een aparte methode

 maak gebruik van de refactoring mogelijkheden van Visual Studio

public IActionResult Create() {

throw new NotImplementedException();

}

Dia 104

 Create [GET] action method

◦ de methode die we via de refactoring verkregen:

private SelectList GetLocationsAsSelectList() {

return new SelectList(

_locationRepository.GetAll().OrderBy(l => l.Name),

nameof(Location.PostalCode),

nameof(Location.Name));

}

public IActionResult Create() {

ViewData["Locations"] = GetLocationsAsSelectList();

return View(nameof(Edit), new BrewerEditViewModel());

}

we moeten de naam van de view specifieren want dit is niet
de default view voor deze action method

Dia 105

 Via ViewData kunnen we doorgeven aan de view of het
een edit of een create betreft? bv, in Create method

 ...en een kleine ingreep in de Edit view volstaat om
dezelfde view te kunnen gebruiken voor Create en voor
Edit

@model Beerhall.Models.ViewModels.BrewerEditViewModel

@{

ViewData["Title"] = (bool)ViewData["IsEdit"] ? "Edit brewer" : "Create brewer";

}

<h2>@ViewData["Title"]</h2>

<form asp-action=“Edit" method="post">
…

</form>

ViewData["IsEdit"] = false;

Merk op dat als we geen expliciete controller/action opgeven bij
een form-tag , automatisch bij httpPost de controller/action
gebruikt wordt van de HttpGet Dia 106

Create - POST

 Create [POST]
◦ Controller verantwoordelijkheden

 de gegevens van het formulier ontvangen

 controleren of de gegevens geldig zijn

 het domein en de repositories aansturen

 de brewer moet aangemaakt worden volgens de formuliergegevens

 de brewer moet gepersisteerd worden

 indien alles goed verloopt moet de controller redirecten naar de
Index pagina

 indien er iets verkeerd loopt moet de controller het formulier
terug aanbieden

Dia 108

 Create [POST]

◦ de implementatie is vrij analoog aan Edit [Post] en ook hier
kunnen we gebruik maken van refactoring

 we extraheren een methode voor het mappen van een
BrewerEditViewModel naar een Brewer…

[HttpPost]

public IActionResult Create(BrewerEditViewModel brewerEditViewModel) {

throw new NotImplementedException();

}

private void MapBrewerEditViewModelToBrewer(BrewerEditViewModel brewerEditViewModel, Brewer brewer) {
brewer.Name = brewerEditViewModel.Name;
brewer.Street = brewerEditViewModel.Street;
brewer.Location = brewerEditViewModel.PostalCode == null

? null
: _locationRepository.GetBy(brewerEditViewModel.PostalCode);

brewer.Turnover = brewerEditViewModel.Turnover;
}

Dia 109

 Resulterende implemenatatie voor Edit [POST] en
Create [POST]
[HttpPost]
public IActionResult Create(BrewerEditViewModel brewerEditViewModel) {

Brewer brewer = new Brewer(brewerEditViewModel.Name);
MapBrewerEditViewModelToBrewer(brewerEditViewModel, brewer);
_brewerRepository.Add(brewer);
_brewerRepository.SaveChanges();
return RedirectToAction(nameof(Index));

}

[HttpPost]
public IActionResult Edit(BrewerEditViewModel brewerEditViewModel) {

Brewer brewer = _brewerRepository.GetBy(brewerEditViewModel.BrewerId);
MapBrewerEditViewModelToBrewer(brewerEditViewModel, brewer);
_brewerRepository.SaveChanges();
return RedirectToAction(nameof(Index));

}

commit Add functionality Brewer - Create

Dia 110

Delete - GET

 De pagina geeft de naam van de brewer weer en
vraagt om een bevestiging

 De gebruiker kan bevestigen, of kan annuleren

 Ook hier zullen we weerom een GET en een POST
hebben
◦ Golden rule: waneer gegevens worden aangepast, of

verwijderd, op de server, maken we steeds gebruik van
eenzelfde URL en voorzien we een GET en een POST versie
voor de action method. Zo kan de aanpassing/verwijdering
niet gebeuren door het volgen van een link…

Dia 112

 URL: …/Brewer/Delete/4

 Action method

◦ de controller dient enkel de naam van de brewer door te
geven aan de view, dit kan via ViewData gebeuren

public IActionResult Delete(int id) {

throw new NotImplementedException();

}

public IActionResult Delete(int id) {

ViewData[nameof(Brewer.Name)] = _brewerRepository.GetBy(id).Name;

return View();

}

Dia 113

 een eenvoudige view kan volstaan

@{
ViewData["Title"] = "Brewers";

}

<h2>@ViewData["Title"]</h2>

<h4>Please confirm you want to delete brewer @ViewData["Name"]…</h4>

<form asp-action="Delete" method="post">
<div>

<button class="btn btn-primary" type="submit">Delete</button>
<a asp-action="Index" class="btn btn-default">Cancel

</div>
</form>

Dia 114

Delete - POST

 Delete [POST]
◦ Controller verantwoordelijkheden

 de gegevens van het formulier ontvangen

 controleren of de gegevens geldig zijn

 het domein en de repositories aansturen

 de brewer moet verwijderd worden

 de controller redirect naar de Index pagina

Dia 116

 Delete [POST]
[HttpPost, ActionName("Delete")]

public IActionResult DeleteConfirmed(int id) {

_brewerRepository.Delete(_brewerRepository.GetBy(id));

_brewerRepository.SaveChanges();

return RedirectToAction(nameof(Index));

}

binnen een klasse kunnen geen twee
methodes met identieke signatuur

bestaan,
de actionmethod in deze klasse

geven we een andere naam,
DeleteConfirmed, maar voor MVC
blijft dit de action method Delete


controle en reactie als iets

verkeerd loopt komt aan
bod in een volgend

hoofdstuk

commit Add functionality Brewer - Delete

Dia 117

 De meeste websites bieden een consistente lay-out
aan over de verschillende pagina’s heen
◦ typische elementen in zo’n lay-out zijn header, navigation of

menu, footer

◦ scripts en stylesheets, ook dikwijls gebruikt door meerdere
pagina’s van een site, kunnen opgenomen worden in een lay-
out

 De lay-out voorziet in sections. Zo kunnen pagina’s, die
gebruik maken van de lay-out, op specifieke plaatsen
inhoud plaatsen

Layouts reduce duplicate code in views, helping them
follow the Don’t Repeat Yourself (DRY) principle.

Dia 119

http://deviq.com/don-t-repeat-yourself/

 Typische layout

Header/Navigation

Content

Footer

Dia 120

 Het concept Layout kent 2 onderdelen
◦ Enerzijds zijn er de paginasjablonen waarin de layout website bepaald

wordt (in core mvc is dit standaard _layout.cshtml in de Views > Shared
map)

◦ In de pagina’s gebaseerd op een layout dien je enkel nog de inhoud te
plaatsen (= content page).

De daadwerkelijke inhoud van een
pagina wordt gecombineerd met het
geselecteerd sjabloon.

Hierdoor bepaal je op 1 plaats hoe de
indeling van de website is, en krijgen alle
web pagina’s dezelfde indeling.

Dia 121

 _layout.cshtml in Views > Shared
◦ bevat HTML markup

 <html>, <head>, <body>, …

◦ bevat de gemeenschappelijke layout en inhoud

 header, footer, menu

◦ bevat placeholders

 @RenderBody: de plaats waar de inhoud van de webpage komt

 @RenderScripts: de plaats waar de links voor de scripts van de
webpage komen

Dia 122

links naar de CSS

ViewData[“Title”]: inhoud
van de title tag.

Navigation

Dia 123

links naar de scripts

De aangeleverde content
wordt hier geplaatst

de aangeleverde
scripts worden hier
geplaatst

Dia 124

 Hoe maken pagina’s gebruik van _Layout?
◦ _ViewStart in map Views

 wordt uitgevoerd voor de rendering van elke pagina

 bevat de instructie om _Layout te gebruiken

◦ ViewData[“title”]

 wordt gebruikt in _Layout

 in onze pagina kunnen we de ViewData
instellen

◦ De inhoud van onze pagina wordt geplaatst waar @RenderBody()
staat

@{
Layout = "_Layout";

}

@{
ViewData["Title"] = "Brewers";

}

Dia 125

 Je kan ook zelf sections toevoegen aan de layout via
@RenderSection(“<section name>”, required)
◦ let op: indien required true is zal er een exception geworpen

worden indien de section niet aangeleverd wordt

 Voorbeeld
◦ in de layout page:

◦ in de view:

<div id="footer">@RenderSection("footer")</div>

@{
ViewData["Title"] = "Contact";

}
<h2>@ViewData["Title"].</h2>

<address>
…

</address>

@section footer {
We provide a footer like this...

}

Dia 126

 Je kan in de _Layout ook default content voorzien voor
een section

 Voorbeeld _Layout

<div id="footer">
@if (IsSectionDefined("footer"))
{

@RenderSection("footer")
}
else
{

This is the default footer
}

</div>

Dia 127

 CSS is standaard aanwezig in wwwroot > css map
◦ bevat o.a. de opmaak van de site, er wordt naar verwezen in

_Layout

◦

Dia 128

 _Layout kan ook gebruikt worden om op consistente
manier meldingen weer te geven

◦ merk op: dit kan niet via ViewData want deze is na elke request leeg en het prg
pattern resulteert in een post en een get request

 TempData
◦ via een cookie kan data bijgehouden worden over verschillende

HTTP requests
 TempData wordt geledigd zodra ze gelezen wordt in de View

 Als je TempData in de View wil gebruiken zonder ze te ledigen kan je
gebruik maken van Peek of Keep

 meer info op http://www.c-
sharpcorner.com/UploadFile/ansh06031982/using-tempdata-peek-and-
keep-in-Asp-Net-mvc/

Dia 129

Voorbeeld: als de brouwer werd verwijderd wordt geredirect naar de
Index pagina en willen we de melding “You successfullly deleted
brewer <brewer name>” tonen. Analoog voor Edit en Create...

http://www.c-sharpcorner.com/UploadFile/ansh06031982/using-tempdata-peek-and-keep-in-Asp-Net-mvc/

 TempData in _Layout

 TempData in Controller

<div class="container">

<main role="main" class="pb-3">
@if (TempData["message"] != null) {

<div class="alert alert-success">@TempData["message"]</div>
}
@RenderBody()
…

[HttpPost, ActionName("Delete")]
public IActionResult DeleteConfirmed(int id) {

Brewer brewer = _brewerRepository.GetBy(id);
_brewerRepository.Delete(brewer);
_brewerRepository.SaveChanges();
TempData["message"] = $“You successfully deleted brewer {brewer.Name}.";
return RedirectToAction(nameof(Index));

}

dit doen we analoog voor Edit en Create

Dia 130

commit Add success messages using TempData

 Hoe kan de Controller exceptions op te vangen?
◦ TempData

 als een exception geworpen wordt bij het
verwijderen/wijzigen/creëren van een brewer wordt geredirect
naar de Index pagina en kunnen we een foutmelding meegeven in
TempData

◦ ModelState
 wanneer er iets fout loopt tijdens de model binding zal het

framework geen exception werpen maar de ModelState
aanpassen. Het is de verantwoordelijkheid van de controller om
deze te verifiëren en er gepast op te reageren
 als gegevens onvolledig zijn ingevuld kan de controller zorgen dat het

formulier opnieuw wordt aangeboden met de reeds ingevulde
gegevens

 deze vorm van validatie wordt in een later hoofdstuk behandeld

Dia 132

Dia 133

 Voorbeeld: afhandelen van exceptions via TempData
[HttpPost, ActionName("Delete")]
public IActionResult DeleteConfirmed(int id) {

Brewer brewer = null;
try {

brewer = _brewerRepository.GetBy(id);
_brewerRepository.Delete(brewer);
_brewerRepository.SaveChanges();
TempData["message"] = $“You successfully deleted brewer {brewer.Name}.";

}
catch {

TempData[“error"] = $"Sorry, something went wrong, brewer {brewer?.Name} was not deleted…";
}
return RedirectToAction(nameof(Index));

}

@if (TempData["message"] != null) {
<div class="alert alert-success">@TempData["message"]</div>

}
@if (TempData["error"] != null) {

<div class="alert alert-warning">@TempData["error"]</div>
}
@RenderBody()

BrewerController

_LayOut

commit Catch exceptions and add error messages using
TempData

 Wat als een exception niet wordt opgevangen?
◦ development:

 debug mode: exception wordt getoond op de lijn in broncode
waar exception geworpen werd

 without debugging: exception wordt getoond in de developer
exception page in de browser

Environments, like “Development” and
“Production”, are a first-class notion in ASP.NET
Core and can be set using environment variables.

public void Configure(…) {
…
if (env.IsDevelopment()) {

app.UseDeveloperExceptionPage();
app.UseBrowserLink();
}

else {
app.UseExceptionHandler("/Home/Error");

}
… StartUp.cs

Dia 134

 Wat als een exception niet wordt opgevangen?
◦ production:

public void Configure(…) {
…
if (env.IsDevelopment()) {

app.UseDeveloperExceptionPage();
app.UseBrowserLink();
}

else {
app.UseExceptionHandler("/Home/Error");

}
… StartUp.cs

[Route("/Error")]

public IActionResult Error() {

// Handle error here

} HomeController.cs

attribute based
routing

Dia 135

 Exception Filters
◦ Action Filters zijn stukjes code die uitgevoerd worden net na

of net voor de uitvoering van een action methode of
ActionResult.

 Exception filters kunnen gebruikt worden om exceptions die
gebeuren tijdens controller instantiatie of model binding en niet
worden opgevangen af te handelen

 het uitvoeren van een filter kan worden ingesteld op niveau van actie
methode, controller of op application niveau

 maak bij voorkeur gebruik van de error handling middleware

 gebruik exception filters enkel wanneer foutafhandeling specifiek voor
een bepaalde action moet worden beschreven

 zie hoofdstuk MVC In Depth voor meer details over filters

Dia 136

Delete - POST

 Unit testen maken geen gebruik van de database
◦ unit testen zijn isolated, ze moeten ook runnen als de

databank niet bereikbaar is…

◦ unit testen zijn snel…

◦ unit testen zijn repeatable…

Dia 138

 Tijdens het unit testen kunnen we dummy repositories
injecteren in de controller…
◦ deze repositories kunnen gebruik maken van een dummy

DbContext

◦ de dummies bevatten een minimale implementatie

 i.e. enkel wat nodig is om de testen te runnen

public class DummyBrewerRepository : IBrewerRepository {

…

public DummyBrewerRepository(DummyApplicationDbContext dbContext) {

this.dbContext = dbContext;

}

…

public class DummyApplicationDbContext : DbContext {

…

}

Dia 139

 Unit testen met dummies…

public class BrewerController : Controller {
private readonly IBrewerRepository _brewerRepository;
private readonly ILocationRepository _locationRepository;

public BrewerController(IBrewerRepository brewerRepository, ILocationRepository locationRepository) {
_brewerRepository = brewerRepository;
_locationRepository = locationRepository;

}
…
}

public class BrewerControllerTest {
private BrewerController _controller;

public BrewerControllerTest() {
DummyApplicationDbContext dbContext = new DummyApplicationDbContext();
_controller = new BrewerController(new DummyBrewerRepository(dbContext),

new DummyLocationRepository(dbContext));
}

}

Dia 140

 Tijdens het unit testen kunnen we ook gebruik maken
van mocking

 Mock objecten zijn krachtiger dan dummy objecten
◦ Beschrijven hoe een object reageert op een call

 we hoeven geen volledige implementatie van de klasse te
voorzien

◦ Maakt verificatie van de calls mogelijk

 we kunnen vastleggen welke soort calls we kunnen verwachten,
welke parameters die calls moeten bevatten, in welke volgorde de
calls moeten gebeuren, hoeveel keer die calls moeten gebeuren…

 bv. bij testen van de Index methode uit BrewerController moet de
controller alle brewers ophalen: de methode GetAll() uit de
_brewerRepository moet 1 keer aangeroepen worden

Dia 141

 Mocking frameworks helpen ons om mock objecten
aan te maken
◦ Typemock, Rhino Mocks, Moq, …

◦ Wij gaan gebruik maken van Moq: https://github.com/Moq

Dia 142

 Installatie van Moq in het project Beerhall.Tests

Dia 143

 Declaratie en instantiatie van de mocks
public class BrewerControllerTest {

private BrewerController _controller;
private Mock<IBrewerRepository> _brewerRepository;
private Mock<ILocationRepository> _locationRepository;

public BrewerControllerTest() {
_brewerRepository = new Mock<IBrewerRepository>();
_locationRepository = new Mock<ILocationRepository>();
_controller = new BrewerController(_brewerRepository.Object,

_locationRepository.Object);
}

.Object: een instantie
van het type die

gemocked wordt

Mock<Type> is een soort
proxyklasse

Type is een interface, of
een concrete klasse

(enkel virtual methods
van de klasse kunnen

gemocked worden)

Creatie van een instantie
van de Mock

Dia 144

 De unit testen voor Index

◦ De Index action method moet

 een geordende lijst van Brewers door geven aan de View

 de totale turnover via ViewData doorgeven

◦ Elke test bevat

 Arrange: trainen van de Mock

 Act: uitvoeren van de methode

 Assert: Controleren van het resultaat

Dia 145

public void Index_PassesOrderedListOfBrewersInViewResultModelAndStoresTotalTurnoverInViewData()

 Trainen van de mocks
◦ we moeten aangeven hoe de mock objecten reageren op

methode aanroepen

◦ we moeten de mock enkel trainen voor de relevante
methodes

 Setup(x).Returns(y)

 Setup(x).Throws(z)

 x: de methode die je aanroept met zijn parameterwaarden

 y: wat de methode zal retourneren

 z: de exception die de methode dan zal retourneren

 Het trainen kan je in de constructor doen of in de testmethodes
zelf.

Dia 146

 Trainen van de mocks
◦ voorbeeld:

 de action method Index moet alle brewers uit de repository halen,
dit gebeurt via de methode GetAll()

 in de testmethode kunnen we de mock als volgt trainen

 wanneer de controller getAll() oproept zal deze call de lijst met de
brewers bavik en moortgat retourneren

 we kunnen expliciet nagaan of, en hoeveel keer, de methode
GetAll() werd aangeroepen

//Arrange
Brewer bavik = new Brewer("Bavik") { BrewerId = 1 };
Brewer moortgat = new Brewer("Duvel Moortgat") { BrewerId = 2 };
_brewerRepository.Setup(m => m.GetAll()).Returns(new List<Brewer>() {bavik, moortgat});

Dia 147

 Act
 de action method Index moet worden uitgevoerd

 IActionResult is een interface met meerdere implementaties

 return View()

 return RedirectToAction()

//Act
IActionResult result = _controller.Index();

Dia 148

 IActionResult
◦ maak gebruik van de Object Browser (of de online help) om

in detail te zien wat er voorzien is in klassen…

Dia 149

 ViewResult
◦ Is een implementatie van IActionResult.

Gets the View Data Model

Gets or sets the
Microsoft.AspNetCore.Mvc.ViewFeatures.ViewDataDictionary for this result.

Dia 150

 RedirectToActionResult
◦ Is een implementatie van IActionResult.

Gets or sets the name of the action to use for generating the URL.

Gets or sets the name of the controller to use for generating the URL.

Gets or sets the route data to use for generating the URL.

Dia 151

 Act
 de action method Index retourneert dus een ViewResult

 Assert : controleert of property Model van ViewResult lijst
van Brewers bevat, en Viewdata correct werd ingevuld

//Act
var result = Assert.IsType<ViewResult>(_controller.Index());

//Assert

var brewersInModel = Assert.IsType<List<Brewer>>(result.Model);

Assert.Equal(3, brewersInModel.Count);

Assert.Equal("Bavik", brewersInModel[0].Name);

Assert.Equal("De Leeuw", brewersInModel[1].Name);

Assert.Equal("Duvel Moortgat", brewersInModel[2].Name);

Assert.Equal(20050000, result.ViewData["TotalTurnover"]);

Dia 152

public void Edit_ValidEdit_UpdatesAndPersistsBrewerAndRedirectsToActionIndex() {

_brewerRepository.Setup(m => m.GetBy(1)).Returns(_dummyContext.Bavik);

var brewerEvm = new BrewerEditViewModel(_dummyContext.Bavik)

{

Street = "nieuwe straat 1"

};

var result = Assert.IsType<RedirectToActionResult>(_controller.Edit(brewerEvm, 1));

var bavik = _dummyContext.Bavik;

Assert.Equal("Index", result?.ActionName);

Assert.Equal("Bavik", bavik.Name);

Assert.Equal("nieuwe straat 1", bavik.Street);

_brewerRepository.Verify(m => m.SaveChanges(), Times.Once());

}

Dia 153

 Gebruik en verificatie van de mocks
◦ voorbeeld:

 de testmethode Edit_ValidEdit_… bevat het trainen van een moq
en de verificatie na de act.

hier gaan we na of de methode SaveChanges() exact
1 keer werd aangeroepen

 Gebruik van een DummyContext
◦ de concrete repositories maken gebruik van een

ApplicationDbContext

◦ we kunnen een DummyApplicationDbContext voorzien

 deze stellen we zo op dat ze al onze nodige testgevallen bevat

 we hoeven zo geen uitgebreide initialisatie code opnemen in de
testmethodes of in de constructor van de testklasse

 we denken aan het Don’t Repeat Yourself principe…

public class BrewerControllerTest {
private BrewerController _controller;
private Mock<IBrewerRepository> _brewerRepository;
private Mock<ILocationRepository> _locationRepository;
private DummyApplicationDbContext _dummyContext;

public BrewerControllerTest() {
_dummyContext = new DummyApplicationDbContext();
_brewerRepository = new Mock<IBrewerRepository>();
_locationRepository = new Mock<ILocationRepository>();
_controller = new BrewerController(_brewerRepository.Object, _locationRepository.Object);

} Dia 154

 Gebruik van een DummyContext
◦ onze testmethode kan er nu als volgt uit zien

[Fact]

public void Index_PassesOrderedListOfBrewersInViewResultModelAndStoresTotalTurnoverInViewData() {

_brewerRepository.Setup(m => m.GetAll()).Returns(_dummyContext.Brewers);

var result = Assert.IsType<ViewResult>(_controller.Index());

var brewersInModel = Assert.IsType<List<Brewer>>(result.Model);

Assert.Equal(3, brewersInModel.Count);

Assert.Equal("Bavik", brewersInModel[0].Name);

Assert.Equal("De Leeuw", brewersInModel[1].Name);

Assert.Equal("Duvel Moortgat", brewersInModel[2].Name);

Assert.Equal(20050000, result.ViewData["TotalTurnover"]);

}

Dia 155

 Trainen van een mock
◦ Enkele voorbeelden

 Alle brouwers retourneren

 Brouwer met id 1

 Onbestaande brouwer. (Mock retourneert null indien niet
getraind voor een bepaald geval, maar je kan hier ook een regel
voor maken). Als de methode null retourneert, moet je de null
casten naar het juiste type

_brewerRepository.Setup(m => m.GetAll()).Returns(_dummyContext.Brewers);

_brewerRepository.Setup(m => m.GetBy(1)).Returns(_dummyContext.Bavik);

_brewerRepository.Setup(m => m.GetBy(10)).Returns((Brewer) null);

Dia 156

 Trainen van een mock, vervolg
 Als de methode void retourneert heb je geen Returns

 Als de methode een exception throwt, gebruik Throws

_brewerRepository.Setup(m => m.Add(new Brewer("TestBrewer")));

_brewerRepository.Setup(m => m.Add(null)).Throws<ArgumentNullException>();

Dia 157

 Verificatie van een mock
◦ nagaan of de dependent klasse volgens een verwacht patroon

gebruikt wordt

// Method should be called with specified parameter
mock.Verify(foo => foo.Execute("ping“))

// Method should never be called
mock.Verify(foo => foo.Execute("ping"), Times.Never());

// Called at least once
mock.Verify(foo => foo.Execute("ping"), Times.AtLeastOnce());

// Verify setter invocation of property Name, regardless of value.
mock.VerifySet(foo => foo.Name);

// Verify setter called with specific value
mock.VerifySet(foo => foo.Name ="foo");

// Mocking for a range of values
mock.VerifySet(foo => foo.Value = It.IsInRange(1, 5, Range.Inclusive));

Dia 158

 Generischer maken van setup
◦ It: laat toe om matching conditie op te geven

◦ Enkele mogelijkheden:

//IsAny<T> matches if parameter is any instance of type T
mock.Setup(foo => foo.Execute(It.IsAny<string>())).Returns(true);

// Is<T> matches based on a specified predicate
mock.Setup(foo => foo.Add(It.Is<int>(i => i % 2 == 0))).Returns(true);

// IsInRange<T> matches if parameter is between the defined values
mock.Setup(foo => foo.Add(It.IsInRange<int>(0, 10, Range.Inclusive))).Returns(true);

// IsRegex : matches a string parameter if it matches the specified regular expression
mock.Setup(x => x.Execute(It.IsRegex("[a-d]+", RegexOptions.IgnoreCase))).Returns("foo");

meer info? Zie: https://github.com/Moq/moq4/wiki/Quickstart

Dia 159

 De action methods die gebruik maken van TempData
verdienen speciale aandacht
◦ de property TempData (van het type ITempDataDictionary)

voor de controller moet ingesteld worden

◦ we kunnen dit oplossen met een mock voor TempData

public class BrewerControllerTest {
private BrewerController _controller;
private Mock<IBrewerRepository> _brewerRepository;
private Mock<ILocationRepository> _locationRepository;
private DummyApplicationDbContext _dummyContext;
public BrewerControllerTest() {

_dummyContext = new DummyApplicationDbContext();
_brewerRepository = new Mock<IBrewerRepository>();
_locationRepository = new Mock<ILocationRepository>();
_controller = new BrewerController(_brewerRepository.Object,

_locationRepository.Object){
_controller.TempData = new Mock<ITempDataDictionary>().Object;

}
}

Dia 160

 Wat verwachten we van de Edit-Get methode?

 Wat verwachten we van de Edit-Post methode?

 Wat verwachten we van de Create-Get methode?

 Wat verwachten we van de Create-Post methode?

 Wat verwachten we van de Delete-Get methode?

 Wat verwachten we van de Delete-Post methode?

commit Add unit tests for BrewerController

Dia 161

uitbreiden van de
applicatie

 Werk BeerHall verder uit zodat
◦ je voor een brouwer de lijst van bieren kunt tonen

 ~detail pagina

◦ je een nieuw bier aan een brouwer kunt toevoegen

◦ je een bier van een brouwer kunt verwijderen

Dia 163

extra’s

 In de namespace System.Linq vind je IQueryable<T>
◦ dit kan ook gekozen worden als het returntype voor onze repository

methodes die IEnumerable retourneren

◦ hoe verschillen deze twee collections?

 IEnumerable<T>: aanvullingen (include, where, orderby,….) worden
uitgevoerd in het geheugen

 IQueryable<T>: aanvullingen (include, where, orderby,….) worden uitgevoerd
in de database, i.e. ze breiden de query verder uit

Dia 165

 IQueryable

Pag. 166

Repository

Controller Generated queries

Dia 166

 Per default worden alle queries die entities retourneren
getracked

 Je kan de performantie verbeteren door voor read-only
queries expliciet aan te geven dat de entities niet hoeven
getracked te worden…

voorbeeld van de GetAll met AsNoTracking in de BrewerRepository

Dia 167

 Soms is het handig te zien welke queries EF genereert,
zo kan je bv. de performantie in het oog houden
◦ zie https://docs.microsoft.com/nl-

nl/aspnet/core/fundamentals/logging?tabs=aspnetcore2x om logging
te voorzien

◦ of maak gebruik van SQL Server Profiler

Dia 168

https://docs.microsoft.com/nl-nl/aspnet/core/fundamentals/logging?tabs=aspnetcore2x

 Controllers bevatten geen business logica
◦ hiervoor delegeert de controller naar het domein

◦ voorbeeld: in een action method moeten we alle bieren van
een bepaald type voor een bepaalde brouwer ophalen

 Slechte oplossing :

 Pas Law of Demeter toe in MVC

 Vermijd . . notatie (is in Linq heel eenvoudig)

public ActionResult Bieren(int brouwerid, string type) {

Brouwer b = brouwerRepository.GetBy(brouwerid);

return View(b.Bieren.Where(b=>b.Type==type).ToList());

}

Dia 169

 Controllers bevatten geen business logica
◦ voorbeeld vervolg, een tweede slechte oplossing:

 Gebruik enkel repositories voor het ophalen van het root object!

 ophalen van geassocieerde objecten gebeurt via het domein!

public ActionResult Bieren(int brouwerid, string type) {

Ienumerable<Bier> bieren= bierenRepository.GetBy(brouwerid);

return View(bieren.Where(b=>b.Type==type).ToList());}

Dia 170

 Controllers bevatten geen business logica
◦ voorbeeld vervolg, een goede oplossing:

 Merk op: ook Views bevatten geen businesslogica
◦ presenteren enkel data

 Pas design patterns toe in je ontwerp

public ActionResult Bieren(int brouwerid, string type) {

Brouwer b = brouwerRepository.GetBy(brouwerid);

return View(b.GetBieren(type));}

Dia 171

ref

 ASP.NET Core Fundamentals by Scott Allen – Pluralsight cursus -
https://app.pluralsight.com/library/courses/aspdotnet-core-fundamentals/table-
of-contents

 Building a Web App with ASP.NET CORE, MVC 6, EF Core, and Angular by Shawn
Wildermuth – Pluralsight cursus -
https://app.pluralsight.com/library/courses/aspnetcore-mvc-efcore-bootstrap-
angular-web/table-of-contents

 Pro ASP.NET Core MVC: Seveth edition by Adam Freeman - Apress
Softcover ISBN 978-1-4842-3149-4
eBook ISBN 978-1-4842-3150-0

 Micrsoft documentatie

◦ https://docs.microsoft.com/nl-nl/aspnet/index#pivot=core&panel=core_overview

◦ https://www.asp.net/freecourses

◦ https://docs.microsoft.com/en-us/ef/core/

Dia 173

https://app.pluralsight.com/library/courses/aspdotnet-core-fundamentals/table-of-contents
https://app.pluralsight.com/library/courses/aspnetcore-mvc-efcore-bootstrap-angular-web/table-of-contents
https://docs.microsoft.com/nl-nl/aspnet/index#pivot=core&panel=core_overview
https://www.asp.net/freecourses
https://docs.microsoft.com/en-us/ef/core/

