
https://github.com/WebIII/07thEntityFramework

1

1. Inleiding

2. Entity Framework Core - Code First :
1. Installatie EF Core

2. De Persistentieklasse

3. Aanmaken domeinmodel volgens Code First Workflow

4. Fluent API

5. Associaties

6. Overerving

3. Seeding van de database

4. Querying en saving data

2

3

 ADO.NET
◦ Library om volledig zelf de persistentielaag te bouwen

4

 Entity Framework Core
 Is een open source cross platform ORM (Object Relational

mapper) framework

 Werkt met relationele en niet relationele datastores. Voor een
overzicht van de providers zie https://docs.microsoft.com/en-
us/ef/

 Data access gebeurt o.b.v. een model

 https://github.com/aspnet/EntityFramework/wiki/Roadmap, zie
backlog features

5

https://docs.microsoft.com/en-us/ef/
https://github.com/aspnet/EntityFramework/wiki/Roadmap

 Entity Framework Core
◦ Genereert de persistentielaag: infrastructuur om objecten te

mappen naar database en viceversa

 Mapt klassen naar tabellen, properties naar kolommen in tabel

 Mapt objecten naar rijen

 Mapt associaties naar FK relaties

 Ondersteunt overerving

◦ Een API, Linq to Entities, voor het opvragen en manipuleren
van de objecten. De acties worden vertaald naar queries op
de database

 .Net taal syntax, gecompileerd!

 Onafhankelijk van de backend SQL dialect, OO taal

◦ Documentatie op https://docs.microsoft.com/en-us/ef/.

6

 Het opbouwen van een database/model: 2 manieren
◦ Code-First : je bouwt het model en genereert de database

 2 mogelijke werkwijzen

 Drop-Create database

 Migrations : bestaande database verder aanpassen of nieuwe
database stap per stap opbouwen
(http://www.learnentityframeworkcore.com/migrations)

◦ Database-First: vanuit een bestaande database genereer je
het model

 Commando scaffold-dbcontext. Meer op
https://docs.microsoft.com/enus/ef/core/miscellaneous/cli/dotnet

7

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet

 Code-First: model -> new database
1. Installeer Entity Framework Core

2. Maak de persistentielaag aan en configureer de database
provider

3. Maak domein model aan (of voer aanpassingen door)

4. Drop en creëer de database.

5. Customiseer de mapping waar nodig

6. Terug naar 3 totdat database correct is aangemaakt

8

 Het domein model

9

Installatie EF Core

10

 Maak een nieuw .Net Core Console applicatie aan,
noem dit BeerhallEF

 Voeg Entity Framework Core toe
◦ Rechtsklik source BeerhallEF in solution explorer > Manage

Nuget Packages

◦ Installeer de nuget package voor de gewenste database
provider

 Zoek naar Microsoft.EntityFrameworkCore.SqlServer en klik
Install v3.0.0

11

◦ Installatie van Microsoft.EntityFrameworkCore.SqlServer

 Of via Tools > Nuget package Manager Console

 Install-Package Microsoft.EntityFrameworkCore.SqlServer

 voegt een Dependency toe (zie solution explorer)

 Build je project, zodat de packages geinstalleerd worden en csproj
wordt aangepast.(rechtsklik project > edit project file)

12

◦ Installatie van EntityFrameworkCore.Tools

 Geeft de mogelijkheid om via een CLI commando's te runnen:

 Build, en bekijk de .csproj file via Edit

13

De persistentieklasse (DbContext)

14

 Maak een klasse aan die erft van DbContext
◦ ”this derived context represents a session with the database,

allowing you to query and save data”

◦ Maak een folder Data binnen het project

◦ Voeg een klasse ApplicationDbContext toe

 erf van DbContext (namespace Microsoft.EntityFrameworkCore):
voorziet in alle functionaliteiten van EF om met de database te
communiceren

15

 DbContext(namespace
Microsoft.EntityFrameworkCore)

16

 Configureer de database provider
◦ Meer op https://docs.microsoft.com/en-

us/ef/core/miscellaneous/configuring-dbcontext

◦ DbContext vereist een instantie van DbContextOptions(Builder).

 In console app : override OnConfiguring

 In web app: dependency injection

17Tip : typ in override en dan krijg je een lijst van de methodes

Deze code wordt uitgevoerd bij het
aanmaken van een nieuwe instantie
van ApplicationDbContext

https://docs.microsoft.com/en-us/ef/core/miscellaneous/configuring-dbcontext

 Pas program.cs aan

 Run. De database wordt gecreëerd.

 using: https://docs.microsoft.com/en-
us/dotnet/csharp/language-reference/keywords/using-
statement

18

Indien de database
bestaat dan wordt deze
eerst verwijderd.

De database wordt
gecreëerd indien deze
nog niet bestaat

commit “Add
ApplicationDbContext”

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement

 Bekijk het resultaat
◦ View > SQL Server Object Explorer

 Klik op knop “Add SQL server”, server name = . (of localhost)

◦ Of bekijk de database in SQL Server Management Explorer (zie
verder)

19

Aanmaken Domain model volgens code first
workflow

20

 Bouwen van domein model adhv de code first
workflow
1. Pas het domein model aan: creëer een nieuwe

domeinklasse of wijzig een bestaande klasse, voeg
associaties toe, …

2. Drop en creëer de database

3. Bekijk de gegenereerde tabellen

4. Pas, indien nodig, de mapping aan

5. Herhaal vorige stappen tot de database correct is
aangemaakt

6. Vul de database met sample data

7. Commit

21

22

PM>update-database

Genereer de databaseMaak domein model aan

STAP 1 STAP 2

 Best practice : Streef naar kleine stappen

23

 Pas “indien nodig” de ApplicationDbContext klasse aan
◦ Bevat een DbSet voor elke domeinklasse waarvoor een

overeenkomstige tabel in de database bestaat

 “indien nodig”:

 EF doet aan type discovery (zie verder)

 Aggregate roots (zie verder)

24

◦ DbSet (namespace System.Data.Entity)

 ~ Repository

 Lijst van (in memory) objecten van een bepaald type die de
persistentielaag ter beschikking stelt

 Deze lijst kan je bevragen a.d.h.v. Linq to Entities (zie verder)

25

 Run de applicatie
◦ De database bevat nu een tabel Brewers. EF Code First

hanteert “convention over configuration”.

 Bekijk de database
◦ SQL Server Object Explorer : Tabel Brewers : (dubbelklik toont

ontwerp tabel)

26

 Bekijk de database
◦ Of start SQL Server Management Studio

 Connecteer met . of localhost

 Je kan hier een ERD aanmaken van de tabellen

 Klap Beerhall open, rechtsklik “Database Diagrams” > New
database diagram. Selecteer de gewenste tabellen.

 Selecteer de tabellen op het diagram, klik Tabel view > Standard
voor onderstaande weergave

27

 EF gebruikt voor het omzetten van een klasse naar een
tabel in de database volgende conventies:
◦ Elke klasse wordt een tabel

◦ Elke property wordt een kolom in de tabel

◦ Primary Keys

◦ Enums

◦ Opm: dit zijn conventies, we zullen later zien hoe we dit zelf
kunnen customizeren

28

 Conventie: een klasse wordt een tabel
◦ naam tabel

 Is die van de DbSet of indien geen DbSet, de naam van de klasse

◦ de klasse moet voldoen aan volgende voorwaarden:

 public visibility

 not sealed

 De klasse moet ook opgenomen zijn als DbSet property in de
DbContext, of vernoemd worden in OnModelCreating of
navigeerbaar zijn via navigational properties in een opgenomen
model

29

 Conventies: elke property wordt een kolom in de tabel
◦ naam kolom wordt de naam van de property

 voorbeeld: property Turnover, klasse Brewer=> kolom Turnover, tabel Brewers

◦ datatype kolom (wordt gekozen door de Data Provider)

◦ de property moet voldoen aan volgende voorwaarden:

 moet getter en setter hebben

 de setter hoeft niet public te zijn

30

C# datatype SQL server datatype Allow Nulls

string nvarchar(MAX) yes

bool bit no

int int no

float real no

double float no

decimal decimal(18, 2) No

DateTime Datetime2(7) No

voor de nullable versies van
deze types (bool?, int?, …)

wordt Allow Nulls yes…

 Conventies: bepaling van de Primary Key
◦ De property met naam Id of <classname>Id wordt de PK

 niet hoofdlettergevoelig

 voorbeeld:

 In klasse Brewer: property Id, ID, BrewerId, BrewerID, …

◦ Property van type int, long, short

 autonummering: een identity kolom

◦ Property van type string

 geen autonummering, type nvarchar(450)

◦ Property van type Guid

 geen autonummering, type Guid

31

 Conventies: Enum property
◦ wordt gemapt naar een kolom van het type int

 als property nullable is dan NULL allowed anders niet

 het is de ordinale waarde van de enum die wordt opgeslaan in de
tabel

◦ er wordt geen aparte tabel voorzien met de mogelijke
waarden van de enum

◦ Voorbeeld: zie later klasse Course en Enum Language

 Conventies : Spatial data : Point type
◦ Meer op https://docs.microsoft.com/en-

us/ef/core/modeling/spatial

32

https://docs.microsoft.com/en-us/ef/core/modeling/spatial

 Conventies
◦ Voorbeeld: EF mapping Brewer klasse -> Brewers tabel

33

mapped by convention

 Conventies
◦ Oefening : Hoe wordt de klasse Beer gemapt?

34

 Voldoet de mapping? Fluent API to the rescue

35

Fluent API

36

 Voldoet de (gegenereerde) db niet dan kan je per
klasse opgeven hoe de klasse gemapt dient te worden
naar een tabel in de database
◦ Maak in de Data folder een folder Mapping

◦ Per klasse die gemapt wordt naar een tabel maak je een
klassen aan

 Implementeer de interface IEntityTypeConfiguration<T>

 Configure methode : definieert de mapping adhv Fluent API

37

◦ In de Klasse ApplicationDbContext, methode
OnModelCreating geef je deze klasse op

 Wordt aangeroepen bij aanmaken van de eerste instantie van de
context. Dit wordt dan gecached, dus alle andere instances maken
hier gebruik van

 ModelBuilder: definieert het model. Dit wordt gebruikt om de
CLR classes te mappen met database schema.

38

ApplicationDbContext.cs

 Mappen van een klasse naar een tabel in de database
 Mappen van tabelnaam

 Mappen van primary key

 Mappen van de properties  kolommen

 Enkel de zaken die afwijken van de conventies dien je in de

mapping op te nemen.

 Je kan ook opgeven dat een klasse niet gemapt dient te worden

naar een tabel

39

 Mappen van tabelnaam/Uitsluiten van properties

 Voorbeeld

40

 Definiëren van de sleutel

 Enkelvoudige sleutel : bestaande uit 1 property

 Samengestelde sleutel : bestaande uit meerdere properties.
Bvb een OrderLijn heeft een samengestelde sleutel bestaande uit
OrderId en ProductId

41

 Mappen van properties naar kolommen
 HasColumnName(naam): opgeven van de kolomnamen

 IsRequired(true/false): Optioneel of verplicht (NOT NULL)

 HasMaxLength(maxlengte): de maximale lengte van de kolom =>
nvarchar(maxlength)

 HasColumnType(type): SQL type van de kolom opgeven

 HasDefaultValue(waarde): defaultwaarde kolom bij creatie record

 HasDefaultValueSQL(sql fragment): sql fragment voor berekenen
van de defaultwaarde

 HasComputedColumn(sql-expressie): voor een berekende
kolomwaarde. Hier geef je SQL server expressie op

 HasField(field): EF zal de waarde automatisch aan field toekennen
ipv via de setter van de property

42

 Mappen van properties naar kolommen
◦ Voorbeeld

43

 Mappen van properties naar kolommen
◦ Generated Properties

 Conventie: Voor primary keys van type int of Guid genereert de
database een waarde bij toevoegen (autonummering of identity)

 Fluent API

 ValueGeneratedNever(): database genereert geen waarde

 ValueGeneratedOnAdd(): De database genereert een waarde bij
toevoegen.

 ValueGeneratedOnAddOrUpdate(): De database genereert een
waarde bij elke opslag. (Gebruikt voor concurrency, zie verder)

 Voorbeeld :

44

 Mappen van properties naar kolommen
◦ Read-only properties

 Conventie: Properties met enkel een getter worden “by
convention” niet gemapped naar een kolom in de database.

 Oplossing

 Gebruik een private setter

 OF igv readonly property:
zorg voor een expliciete mapping
en voorzie een constructor. Voor de
argumenten geldt dat de naam en
type argument = naam en type property)

 Voorbeeld : zie later Location klasse.

45

 Mappen van properties naar kolommen
 Concurrency

 In multi-user omgeving, indien meerdere gebruikers dezelfde records
wijzigen

 Last-in-wins updating :

 Enkel gebruiken indien kans op collision heel klein

 Timestamp-based updating (optimistische locking)
 In tabel hou je timestamp (of rowversion) kolom bij met tijdstip laatste

wijziging. Indien deze gewijzigd is sinds het opvragen van gegevens
(daar haal je timestamp ook op), dan mislukt de update

 Ofwel eigen kolom definiëren hiervoor (IsConcurrencyToken)

46

“update Brewers set name=@name, street=@street, ... where brewerId=@ brewerId";

“update Brewers set name=@name, street=@street, timeStamp=@timeStamp, ...

where brouwernr=@brouwernr and timeStamp=@oldTimeStamp;

 Concurrency

 Default: last in wins.

 Optimistic concurrency: geen locking tussen opvragen en update, wel
controle van bepaalde properties mogelijk bij update.

 Gebruik hiervoor best een TimeStamp kolom :

 in C# datatype byte[].

 De mapping

47

In klasse Brewer{
public Byte[] Timestamp { get; set; }

In de methode Configure
builder.Property(p => p.Timestamp)
.ValueGeneratedOnAddOrUpdate()
.IsConcurrencyToken();

 Klassen die niet in de database voorkomen
◦ Voorbeeld: klasse XXX mag niet gemapt worden naar een

tabel in de database

◦ Zie documentatie: including/excluding Types

48

public class ApplicationDbContext : DbContext {
. . .
protected override void OnModelCreating(DbModelBuilder modelBuilder) {

modelBuilder.Ignore<XXX>();
} }

ApplicationDbContext.cs

49

Drop/create databaseDefinieer de mapping
Maak domein model aan

STAP 1 STAP 2 STAP 3

 Fluent api
◦ Voorbeeld: EF mapping Brewer klasse -> Brewer table

50

Mapped with fluent api

◦ Time to Commit : Create class Brewer and table Brewer

51

commit “Add class Brewer and
table Brewer”

◦ Oefening 1 : (Stappen tussen [] kan je skippen)

 Voeg de klasse Beer toe aan het project (zie volgende slide)

 Voeg DbSet voor Beer toe

 [Run de applicatie]

 [Bekijk de gegenereerde database]

 Voeg mapping toe zodat het resultaat als volgt gemapt wordt

 Run de applicatie

52

◦ Oefening 1 :

53

Merk op :
Een bier moet een naam en prijs
hebben bij creatie => constructor
EF gebruikt deze constructor als de
parameter overeenkomt met een
parameter/property conventie. Anders
dien je een default constructor te
voorzien (kan je protected maken). Dit
geldt niet voor associaties

Associaties

54

 Conventies
◦ “By convention, a relationship will be created when there is

a navigation property discovered on a type. A property is
considered a navigation property if the type it points to can
not be mapped as a scalar type by the current database
provider.”

◦ Relationships that are discovered by convention will always
target the primary key of the principal entity. To target an
alternate key, additional configuration must be performed
using the Fluent API.

55

 Terminologie
◦ Principal/Primary key: De property(s) that uniquely identifies the

principal entity. This may be the primary key or an alternate key.
◦ Foreign key: The property(s) in the dependent entity that is used to

store the values of the principal key property that the entity is related
to.

◦ Principal entity: This is the entity that contains the primary/alternate
key property(s). Sometimes referred to as the ‘parent’ of the
relationship.

◦ Dependent entity: This is the entity that contains the foreign key
property(s). Sometimes referred to as the ‘child’ of the relationship.

◦ Navigation property: A property defined on the principal and/or
dependent entity that contains a reference(s) to the related entity(s).

◦ Collection navigation property: A navigation property that contains
references to many related entities.

◦ Reference navigation property: A navigation property that holds a
reference to a single related entity.

◦ Inverse navigation property: When discussing a particular navigation
property, this term refers to the navigation property on the other end
of the relationship.

56

 Verschillende soorten associaties in domein
1. Bi-directionele associaties (fully defined relationships)

2. Geen Foreign Key property

3. Associaties in 1 richting (single navigation property)

57

1 2 3

 Conventies: associaties worden relaties in de db
 Een navigation property moet voldoen aan volgende

voorwaarden

 public

 de setter mag private zijn, hoeft zelf niet aanwezig te zijn.

 een collection moet het type ICollection<T> implementeren

 je instantieert de collection in de default constructor

 wordt default gemapt naar

 een 1:n relatie.

 De FK met de naam <principal key property name> wordt in de
dependant tabel toegevoegd en ALLOWS NULL

 Cascading Delete is None

58

 Conventies: associaties worden relaties
 Instantiatie collections: HashSet<T> versus List<T>:

 https://stackoverflow.com/questions/150750/hashset-vs-list-
performance

59

HashSet<T> List<T>

geen duplicaten toegestaan
• override eventueel Equals en

GetHashCode inklasse T
• methode Add(T) retourneert een

boolean

duplicaten toegestaan

geen volgorde op elementen
bv. Add(T), Contains(T)

volgorde op elementen
bv. Insert(index, T), IndexOf(T), …

enorm snel te bepalen of element tot
de collectie behoort, element
toevoegen, weghalen

trager te bepalen of een element tot
de collectie behoort, element
toevoegen, weghalen

http://performance

 Voorbeeld
◦ Pas de klasse Brewer aan.

 Voeg onderstaande properties toe

 Instantieer de associatie in de default constructor

60

m
a

p
p

ed
b

y
co

nv
en

ti
o

n

61

PM>update-database
Voeg mapping toeVoeg associatie toe

STAP 1 STAP 2 STAP 3

 1:n
◦ Identificeer de navigation property die een associatie

definieert
 Vb. property Beers in klasse Brewer

 Deze associatie moet volgende relatie worden in de database :
 “Een Brouwer is gekoppeld aan meerdere Bieren, maar een Bier is

gekoppeld aan exact 1 Brouwer”

 Mappen gebeurt in 4 stappen

1. Definieer het eerste deel van de relatie, hier “een Brouwer
is gekoppeld aan 0, 1 of meerdere bieren”.
HasOne()/HasMany(): geef de navigation property
waarvoor je relatie mapt op

 Vb. builder.HasMany(t=>t.Beers)

62

 1:n
2. Dan koppel je terug met WithOne()/WithMany() voor de

omgekeerde richting.
 Voorbeeld : Een Brouwer is gekoppeld aan meerdere Bieren,

MAAR een Bier is gekoppeld aan 1 Brouwer

 Igv associatie in 1 richting: gebruik de parameterless overload
builder.HasMany(t=>t.Beers)

.WithOne()

 Igv bidirectionele associatie : geef als parameter de navigation
property op.
 Vb. Stel dat de Beer klasse een property Brewer zou hebben

builder.HasMany(t=>t.Beers)

.WithOne(t=>t.Brewer)

63

 1:n
3. IsRequired(true/false) : een verplichte relatie. Dit bepaalt of

de FK kolom al dan niet NULL mag zijn.

 Voorbeeld :

builder.HasMany(t=>t.Beers)

.WithOne()

.IsRequired()

64

 1:n
4. OnDelete

 Cascade: Gerelateerde entities worden ook verwijderd.

 ClientSetNull (default): De foreign key properties in dependent
entities worden op null geplaatst (enkel voor nullable FK’s). Enkel
voor de childs geladen in memory, niet de childs in de database

 SetNull : De foreign key properties in dependent entities worden
op null geplaatst (enkel voor nullable FK’s). Voor de childs geladen
in memory en in de database (maar niet alle db laten dit toe)

 Restrict: De delete operatie wordt niet toegepast als er
gerelateerde entities zijn

 Voorbeeld

65

 1:n
5. Mogelijks nog een stap 5: Als de FK property bestaat en

de naam niet de conventions volgt dan moet je
dit expliciet mappen naar de FK kolom.

◦ .HasForeignKey(t=>t.FKProperty)

66

 Voorbeeld
◦ Map de property Beers in Brewer. De relatie: 1..n, verplicht, FK

BrouwerId, Cascading delete.

◦ Run de applicatie

67

m
a

p
p

ed
b

y
fl

u
en

t
a

p
i

68

Genereer de database
Voeg mapping toeVoeg associatie toe

STAP 1 STAP 2 STAP 3

 DbSet
 Doordat Brewer een ICollection<Beer> bevat, zal EF een

table Beer aanmaken. Het volstaat een DbSet te voorzien
voor het root element Brewer

 Een DbSet laat toe om de bieren rechtstreeks op te vragen,
toe te voegen, aan te passen en te verwijderen. Enkel als dit
nodig is voor de applicatie voeg je de DbSet toe

commit “Add class Beer
and mapping”

 Oefening

◦ Voeg de klasse Location toe.(Immutable class!)
◦ Pas Brewer klasse aan. Voeg property Location toe
◦ Voeg DbSet<Location> toe, daar we in de applicatie alle locaties

wensen op te vragen
◦ Map via de Fluent API

 PostalCode is maximaal 5 posities en is de key
 Naam is maximaal 100 posities en verplicht
 Relatie: 1:N, optioneel, geen cascading delete

◦ Run de applicatie en controleer de database. Merk op de naam van
de FK <navigation property name><principal key property name>.
Wens je de naam te veranderen voeg dan bvb
.HasForeignKey(“PostalCode”) of
.HasForeignKey(nameof(Location.PostalCode)) toe

◦ Commit “Add class Location and mapping”

70

De properties bevatten
geen setter
Je zal de properties expliciet
moeten mappen!

 Oefening

◦ Voeg de klasse Course en enum Language toe.

◦ Pas Brewer klasse aan. Voeg property Courses (ICollection)
toe, instantieer in de constructor. Merk op een bi-directionele
associatie

◦ Voeg DbSet toe

◦ Map via Fluent API

 Title is verplicht en maximaal 100 posities

 relatie: 1:N, verplicht, cascading delete

◦ Run

◦ Commit “Add class Course and mapping”

71

 1:1
 Zie documentatie https://docs.microsoft.com/en-

us/ef/core/modeling/relationships

72

https://docs.microsoft.com/en-us/ef/core/modeling/relationships

 N:M
 N:M zonder klasse die de “joined” table representeert

wordt nog niet ondersteund door EF Core.

 Je moet de klasse die de joined table voorstelt expliciteren
en daarna map je de N:M als 2 1:N relaties.

 Zie documentatie https://docs.microsoft.com/en-
us/ef/core/modeling/relationships

73

https://docs.microsoft.com/en-us/ef/core/modeling/relationships

 Oefening

◦ N:M

 Neem eerst de documentatie door over N:M relaties:
https://docs.efproject.net/en/latest/modeling/relationships.html
#many-to-many

 Voeg klasse Category toe. Een Category kent de brouwers,
brouwers kent zijn categorieën niet. Creëer extra klassen indien
nodig.

 Voe de mapping toe.

 Commit

74

https://docs.efproject.net/en/latest/modeling/relationships.html#many-to-many

Overerving

75

 Conventies: overerving
◦ Domein: overerving

 Basisklasse: al dan niet abstract

 Voorbeeld Course basisklasse. Online- en
OnsiteCourse zijn subklassen.

◦ DB: Table per Hierarchy

 dit is de default voor mappen overerving

 1 tabel met de properties van alle klassen (basisklasse en
subklassen)

 Naam tabel = naam base class (in meervoud)

 Tabel bevat een extra kolom met de naam Discriminator
(nvarchar(max)) , met als waarden de namen van de (afgeleide)
klassen. Hierdoor kan je weten welke klasse het record voorstelt.

76

 Conventies: overerving
◦ EF gaat niet zelf op zoek naar base klassen…

 configurationklassen voorzien, of,

 maak een DbSet aan voor de superklasse én de base klassen die
je wens op te nemen in de hierarchie, of,

 geef in OnModelCreating aan dat er subklassen zijn

77

 Conventies: overerving
◦ voorbeeld

 Domain Database (1 tabel)

78

Discriminator kolom bevat hier dus de waarde
OnlineCursus of OnsiteCursus (indien Cursus een
concrete klasse was dan kon de waarde ook mogelijks
Cursus zijn). Kolom url zal bvb enkel een waarde
hebben als Discriminator = OnlineCursus

mapped by convention

 De mapping
https://docs.efproject.net/en/latest/modeling/relational/inhe
ritance.html

◦ CourseConfiguration

◦

79

!! Als data uit de database wordt
gelezen mag de setter niet
worden uitgevoerd daar datums
in het verleden kunnen liggen.
Maak hiervoor gebruik van
BackingField. EF zal gebruik
maken van het attribuut
_startDate ipv de setter van de
property StartDate. Meer op
https://docs.microsoft.com/en-
us/ef/core/modeling/backing-
field

https://docs.efproject.net/en/latest/modeling/relational/inheritance.html
https://docs.microsoft.com/en-us/ef/core/modeling/backing-field

 Toevoegen van indexen,….
◦ Bvb unique Index op naam, voor een Bier

Pas mapper aan

80

b.HasIndex(t => t.Name).IsUnique(true);

 1:1
◦ Stel bvb een klasse Address, zonder key. Brewer bevat een

property StreetAddress van type Address.

◦ Via owned types wordt geen nieuwe tabel aangemaakt voor
address maar wordt address kolommen toegevoegd aan de
tabel Brewer

 Of als Address een private property is, gebruik dan de string versie

 Builder.OwnsOne(typeOf(Address),”StreetAddress”)

81

 1:n
◦ Stel Brewer bevat een lijst van ShippingCenters

◦ De mapping

◦ Genereert een table Address met samengestelde sleutel:

◦ Meer op https://docs.microsoft.com/en-
us/ef/core/modeling/owned-entities

82

https://docs.microsoft.com/en-us/ef/core/modeling/owned-entities

 Mappen van meerdere klassen naar 1 tabel
◦ Meer op https://docs.microsoft.com/en-us/ef/core/what-is-

new/

83

https://docs.microsoft.com/en-us/ef/core/what-is-new/

 DbContext
◦ EF verzorgt de mapping van domain <-> database.
◦ EF doet aan Type Discovery. Dit betekent dat EF alle klassen

zal mappen
 waarvoor DbSet gedefinieerd in klasse die erft van DbContext

 of vermeld staan in de OnModelCreating methode

 waarnaar verwezen wordt via navigation properties

 Je kan een klasse uitsluiten via de fluent api : .Ignore
 Voorbeeld : Stel DbSet voor Brewer gedefinieerd => dan wordt tabel Brewers

aangemaakt/gemapt, maar door de navigation properties ook tabel Beers,
Locations en Courses. Online- en OnsiteCourses, Categories wordt niet
aangemaakt/gemapt tenzij je hier ook een DbSet voor voorziet of ze vermeld
in OnModelCreating

◦ Map enkel de aggregate roots
 Aggregate = “a cluster of associated objects that we treat as a unit

for the purpose of data changes”

84

 Entity types met constructors
◦ Wanneer EF Core instanties van een type maakt, zoals bvb bij het ophalen van

een brouwer, wordt eerst de default constructor aangeroepen en wordt
vervolgens elke property ingesteld via de setter op de waarde uit de database.
Als EF Core echter een geparametriseerde constructor vindt met
parameternamen en -typen die overeenkomen met die van de properties,
roept deze in plaats daarvan de geparametriseerde constructor met waarden
voor die properties aan en wordt dan elke property die niet in de constructor
voorkomt expliciet ingesteld.

◦ Niet alle properties vereisen constructor parameters. EF Core zal deze instellen
na het aanroepen van de constructor via de setter van de property

◦ De parameter types en namen in de constructor moeten matchen met de
property types en namen, behalve dan dat properties Pascal-cased zijn, terwijl
parameters camel-cased zijn

◦ EF Core kan geen navigation properties instellen via de constructor!!! In klasse
Course bvb hebben we een default constructor nodig, anders krijg je een
runtime fout : System.InvalidOperationException: No suitable constructor found
for entity type 'Course'. The following constructors had parameters that could
not be bound to properties of the entity type: cannot bind 'brewer' in
'Course(string title, Language language, Brewer brewer)'.

85

Branch : Seeding-Querying-saving-data

86

 Ga eerst naar de branch “Seeding-Querying-saving-
data”

 Seeden = Vullen van de database met data.
◦ De klasse Brewer werd aangepast en bevat nu extra methodes

 Constructors

 AddBeer

 AddCourse

 DeleteBeer

87

 DbContext

88

 DbSet

89

 De klasse BeerhallDataInitializer in de Data folder

90

Context doet aan ChangeTracking, houdt alle wijzigingen bij
tot je SaveChanges aanroept. Zal dan voor alle wijzigingen
INSERT, UPDATE of DELETE instructie creëren=> Transactie

Aan een DbSet kan je
nieuwe objecten
toevoegen

Bekijk de code.

Als de locaties reeds bestaan, worden ze niet opnieuw gecreëerd

SaveChanges voegt de
Locaties toe aan de
database

 Aanroepen van de BeerhallDataInitializer
◦ Program.cs

91

Als je telkens met dezelfde database (met dezelfde data) wenst te starten, kan je de
database eerst verwijderen en daarna terug creëren.

92

 LINQ to Entities
◦ Bevragen van de database

◦ Communicatie met de DbContext
 Aggregaties, projecties, filteren, sorteren, … mogelijk

◦ Strongly typed queries!

◦ Retourneert: Entiteiten

 Achter de schermen genereert EF de overeenkomstige
queries. Kan je bekijken in

 Een profiler

 SQL Server Profiler: openen via Tools menu in SQL Server
Management Studio

 Een logger klasse die je aan je project toevoegt :
https://docs.microsoft.com/en-us/ef/core/miscellaneous/logging

93

 Linq to Entities
◦ Basic Query (zie ook opm op volgende slides)
◦ Loading Related Data – Eager Loading en explicit loading(zie ook

opm op volgende slides)
◦ Client vs. Server Evaluation, lees ook

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-3.0/
Restricted client evaluation

◦ Tracking vs. No-Tracking
◦ Raw SQL Queries
◦ How Query Works

 Neem de documentatie door op
https://docs.microsoft.com/en-us/ef/core/querying/

 Vervolledig de overeenkomstige oefeningen in Program.cs

https://docs.microsoft.com/en-us/ef/core/querying/basic
https://docs.microsoft.com/en-us/ef/core/querying/related-data
https://docs.microsoft.com/en-us/ef/core/querying/client-eval
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-3.0/
https://docs.microsoft.com/en-us/ef/core/querying/tracking
https://docs.microsoft.com/en-us/ef/core/querying/raw-sql
https://docs.microsoft.com/en-us/ef/core/querying/overview
https://docs.microsoft.com/en-us/ef/core/querying/

 Zie program.cs,
◦ plaats QueryData(context); uit commentaar

 Wens je de gegenereerde query te zien, maak dan
gebruik van de ApplicationDbContextWithLogging
klasse.
◦ Meer op https://docs.microsoft.com/en-

us/ef/core/miscellaneous/logging

 De queries worden gelogd in de Console

95

https://docs.microsoft.com/en-us/ef/core/miscellaneous/logging

 Het resultaat

96

 Het resultaat

97

 Single(OrDefault)/First(OrDefault)
◦ Opvragen 1 brouwer (vb met id 1)

 SingleOrDefault(): retourneert null als brouwer niet bestaat. Throwt
exception als er meer dan 1 brouwer aan criterium voldoet

 Single() : Exception als brouwer niet bestaat. Throwt exception als er
meer dan 1 brouwer aan criterium voldoet

 FirstOrDefault(): neemt eerste brouwer die aan criterium voldoet. Null
als brouwer niet bestaat. Geeft geen fout als er meerdere brouwers aan
criterium voldoen. (is performanter dan SingleOrDefault)

 First(): Exception als geen brouwers gevonden
 Merk op: Select Top(2) laat toe om de nodige controles te doen

98

 Filteren: Where
◦ 1 klasse

 Opm : als EF3.0 een where conditie die het niet kan vertalen naar
een SQL Query dan throwt het een exception. Oplossing switch
naar IEnumerable en gebruik dan Linq to Objects

99

 Filteren: Where
◦ via navigational props => JOIN!!

100

Distinct() : geeft enkel de
verschillende terug

◦ Voorbeeld filteren op * associatie via Any (subQuery)
 Brouwers met een bier waarvan de naam met een B begint.

Gebruiken associatie *

101

Heel wat methodes beschikbaar:
- Contains
- Count
- Except
- Intersect
-…

 Projection: Select: Opvragen specifieke properties van
brouwers
◦ Kan performantie verbeteren

102

 Overerving
◦ OfType

103

104

 DbContext verzorgt de object Tracking
◦ Bij opvragen van objecten (na een select query) worden deze in de

Cache (Identity Map) geplaatst.

◦ De DbContext houdt in de cache voor elke entiteit 2 objecten bij

 Het object (entiteit) zelf

 De ObjectStateEntry : nodig voor change tracking

 Originele waarde van object

 EntityState : unchanged, added, updated, deleted

◦ SaveChanges : persisteert wijzigingen naar database

 Alle entiteiten in cache worden overlopen. Als EntityState verschilt van
unchanged wordt insert, update of delete instructie gegenereerd. Enkel
de gewijzigde properties worden gepersisteerd.

 = Unit of Work (alle wijzigingen tegelijk) en TransactieBeheer (alle
wijzigingen lukken of worden gerollbackt)

105

 Meer op https://docs.microsoft.com/en-
us/ef/core/saving/
◦ Basic Save

◦ Related Data

◦ Cascade Delete

 Lees de documentatie en pas dit toe op de
voorbeelden in program.cs. Plaats uit commentaar:

 Zorg ervoor dat de database nu telkens eerst
verwijderd wordt en
opnieuw gecreëerd wordt

106

https://docs.microsoft.com/en-us/ef/core/saving/

 Toevoegen van een object met een identity kolom
◦ 2 queries naar de database

 Insert

 Select : opvragen van de gegenereerde sleutel en aanpassen van
het object

107

 DbContext verzorgt ook de associaties
◦ Opgelet met deletes via navigational properties

◦ Als cascade delete = no action. Beer blijft bestaan maar is niet
langer gekoppeld aan brouwer. Als beer ook verwijdert moet
worden:

108

109

 De documentatie: https://docs.microsoft.com/en-
us/ef/core/

 Introductie tot EF
Core: http://www.learnentityframeworkcore.com/

110

https://docs.microsoft.com/en-us/ef/core/
http://www.learnentityframeworkcore.com/

 Installeer ook de Microsoft.EntityFrameworkCore.Tools
als je EF Core commands in powershell gebruikt en
build het project (Zie appendix voor gebruik)

 Meer op https://docs.microsoft.com/en-
us/ef/core/miscellaneous/cli/powershell

111

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell

 Bouwen van domein model adhv de Migrations
◦ Pas het domein model aan: creëer een nieuwe domeinklasse

of wijzig een bestaande klasse, voeg associaties toe, …

◦ Maak gebruik van EF Migrations om de database aan te
passen

1. Genereer schema: add-migration

2. Update de database: update-database

◦ Bekijk de gegenereerde tabellen

◦ Pas, indien nodig, de mapping aan

◦ Maak gebruik van EF Migrations om de database verder aan te
passen

◦ Vul de database met sample data

◦ Commit

112

 EF Migrations
◦ Migrations is een manier om aanpassingen in het domein

model ook door te voeren in de database, zonder de database
eerst te verwijderen.

 add-migration: scaffolds een nieuwe migratie en maakt hier een
klasse voor aan met code om de database aan te passen.

 update-database: voert de aanpassingen door in de database.

113

114

PM>update-database

PM>update-databasePM>add-migration
CreateTableBrewersMaak domein model aan

STAP 1 STAP 2 STAP 3

 Data Seeding
◦ https://docs.microsoft.com/en-us/ef/core/modeling/data-

seeding

115

https://docs.microsoft.com/en-us/ef/core/modeling/data-seeding

 Properties die geen deel uitmaken van het domein
model. De waarde en state van deze properties wordt
enkel bijgehouden in de Change Tracker
◦ modelBuilder.Entity<Brewer>()

.Property<DateTime>("LastUpdated");

◦ Meer op https://docs.microsoft.com/en-
us/ef/core/modeling/shadow-properties

116

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties

 De gerelateerde data wordt automatisch geladen
wanneer een navigational property gebruikt wordt
◦ Meer info op https://docs.microsoft.com/en-

us/ef/core/querying/related-data, zie Lazy loading

117

https://docs.microsoft.com/en-us/ef/core/querying/related-data

 Je zou bvb de data kunnen encrypteren alvorens het
wordt opgeslaan in de db
◦ Meer op https://docs.microsoft.com/en-

us/ef/core/modeling/value-conversions

118

https://docs.microsoft.com/en-us/ef/core/modeling/value-conversions

 Van een aantal methods bestaat ook een asynchrone
versie (bvb SaveChangesAsync). Een uitgebreide uitleg
over asynchroon programmeren (async, await) kan je
vinden op onderstaande link

 https://docs.microsoft.com/en-
us/dotnet/csharp/programming-
guide/concepts/async/

119

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/

