HoGent

BEDRIJF
EN
ORGANISATIE

Hoofdstuk 7 : Entity Framework Core

https://github.com/WeblIl/07thEntityFramework

HoGent

Hoofdstuk 7 : Entity Framework Core

1. Inleiding

2. Entity Framework Core - Code First :

Installatie EF Core

De Persistentieklasse

Aanmaken domeinmodel volgens Code First Workflow
Fluent API

Associaties

Overerving

3. Seeding van de database
4. Querying en saving data

o Uk wheE

HoGent)

Inleiding

HoGent

1. Inleiding

» ADO.NET
o Library om volledig zelf de persistentielaag te bouwen

MET Data Provider D ataset
D ataTableCollection
D ataTahle

Connection Dataasdapter

|T"E""SE"Tfi'3”'I | |SEIectCDmmand |

D ataRowCollection

Com m and |Ir'|5|3rtC|:|mm and |

O ataColumnCollection

| Param eters | |UpdateCommand |

D ataReader |Deletet2|:|mmand | -

1 D ataPelationCollection

4

= !
=ML

Database

ConstraintCollection

HoGent

1. Inleiding

» Entity Framework Core

* |Is een open source cross platform ORM (Object Relational
mapper) framework

- Werkt met relationele en niet relationele datastores. Voor een
overzicht van de providers zie https://docs.microsoft.com/en-
us/ef

- Data access gebeurt 0.b.v. een model

« https://github.com/aspnet/EntityFramework/wiki/Roadmap, zie
backlog features

HoGent

https://docs.microsoft.com/en-us/ef/
https://github.com/aspnet/EntityFramework/wiki/Roadmap

1. Inleiding

» Entity Framework Core

o Genereert de persistentielaag: infrastructuur om objecten te
mappen naar database en viceversa
- Mapt klassen naar tabellen, properties naar kolommen in tabel
- Mapt objecten naar rijen
- Mapt associaties naar FK relaties
* Ondersteunt overerving

o Een API, Linqg to Entities, voor het opvragen en manipuleren

van de objecten. De acties worden vertaald naar queries op
de database

* .Net taal syntax, gecompileerd!
- Onafhankelijk van de backend SQL dialect, OO taal
> Documentatie op https://docs.microsoft.com/en-us/ef/.

HoGent

1. Inleiding

» Het opbouwen van een database/model: 2 manieren

o Code-First : je bouwt het model en genereert de database
- 2 mogelijke werkwijzen
* Drop-Create database

« Migrations : bestaande database verder aanpassen of nieuwe
database stap per stap opbouwen
(http://www.learnentityframeworkcore.com/migrations)

o Database-First: vanuit een bestaande database genereer je
het model

- Commando scaffold-dbcontext. Meer op
https://docs.microsoft.com/enus/ef/core/miscellaneous/cli/dotnet

Code First

|l Generated
Database

af

Generated

Bising I S ot Model

HOGent Dratabase

[classes)

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet

1. Inleiding

» Code-First: model -> new database
1. Installeer Entity Framework Core

2. Maak de persistentielaag aan en configureer de database
provider

— 3. Maak domein model aan (of voer aanpassingen door)
4. Drop en creéer de database.
5. Customiseer de mapping waar nodig
6. Terug naar 3 totdat database correct is aangemaakt

HoGent

Inleiding

» Het domein model

| Course A S Brewer " Brewer A | Beer A
Class | Class Class
= Properties M Courses: ICollection<Course> = Properties K Beers: ICollection<Beer> | & Properties
& Courseld { get: set: } 1 int s | & Brewerld { get: set: } 1 int L -l B AlcoholByWolume | get: set:) double?
g g > ¥ g
& Credits | get; set: }:int? & ContactEmail { get: set; } : string & AlcoholKnown { get; set: }: bool
& Title { get; set } : string La N & DateEstablished | get; set; } : Dat... & Beerld | get; set; } @ int
= Methods K language En:: & Description { get: set) string & Description { get: set } : string
@, Coursel) I = & Name { get; set;)« string K& Name{ get; set; }: string
* . - -
§© Course{string title, Language lan... Mederlands & NrOfBeers { get; set; }:int & Price| get; set; } : decimal
\. J Frangais K Street{ get; set; } : string = Methods
é} English & Turnover | get; set; } 1 int? @, Beerl)
i~ P E Methods @ Beer{string name)
E:lte(:ourse) . @, Brewer() -
+ | OnlineCourse A |
Course . 0 -
Class J Brewers : |Collection <Brewer> M -
N B Location
= Fields =
Category A Location A
@ _startDate : DateTime = Properties Clacs Class
= Properties & Url{ get; set; }: string
K& From{get set }: TimeSpan? = Methods = Properties = Properties
& NumberQfDays | get: set } 1 int @, OnlineCoursel) & Categoryld { get; set; } 1 int K& Name{ get; set; }: string
K StartDate { get; set; } : DateTime © OnlineCourse(string title, Lan.. & Name { get; set; }: string & PostalCode { get; set; } : string
A Till{ get: set: }: TimeSpan? L, '). = Methods - <
= Methods @ Add(Brewer b) : void
@, OnsiteCourse() @, Category()
@ OnsiteCourse(string title, Langua... @ Category(string name)
) . J

HoGent 5

Entity Framework Core — To a new
database (Code First workflow)

Installatie EF Core

HoGent

Installatie EF Core

» Maak een nieuw .Net Core Console applicatie aan,
noem dit BeerhallEF

» Voeg Entity Framework Core toe

o Rechtsklik source BeerhallEF in solution explorer > Manage
Nuget Packages

o |nstalleer de nuget package voor de gewenste database

provider
- Zoek naar Microsoft.EntityFrameworkCore.SqlServer en klik
Install v3.0.0
Browse Installed Updates Nu
entity X - G D Include prerelease
) i3l Microsoft.EntityFrameworkCore.SqlServ
fv2d Microsoft.EntityFrameworkCore.Analyzers @ by Microsoft, 31.1M downloads v3.0.0

CSharp Analyzers for Entity Framework Core.

Version: | Latest stable 3.0.0

Iv3d Microsoft.EntityFrameworkCore.SqlServer @ by Microsoft, 35.2M downloads v3.0.0

(V) Options
Microsoft SQL Server database provider for Entity Framework Core. N

Installatie EF Core

o |nstallatie van Microsoft.EntityFrameworkCore.SqlServer

 Of via Tools > Nuget package Manager Console
* Install-Package Microsoft.EntityFrameworkCore.SqlServer
- voegt een Dependency toe (zie solution explorer)

4 |c#| BeerhallEF
4 ' Dependencies
b & Analyzers
P = Frameworks
4 '@ Packages
b 'Q! Microsoft.EntityFrameworkCore.5gl5erver (3.0.0)
P c* Program.cs

* Build je project, zodat de packages geinstalleerd worden en csproj
wordt aangepast.(rechtsklik project > edit project file)

<ltemGroup>
<PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer" Version="3.0.0" />
</ltemGroup>

HoGent 12

Installatie EF Core (Tools)

o |nstallatie van EntityFrameworkCore.Tools
- Geeft de mogelijkheid om via een CLI commando's te runnen:

Updates NuGet Package Manager: BeerhallEF

Browse Installed

entityframework X - C. l:‘ Include prerelease Package source: |nugetorg - &

a

3l Microsoft.EntityFrameworkCore.Tools @ & nugetorg

Microsoft.EntityFrameworkCore.Tools & by Microsoft, 28.9M downloads v3.00
Entity Framework Core Tools for the NuGet Package Manager Console in Visual Studio. .
Version: | Latest stable 3.0.0 =4 Install
EntityFramework.MappingAPI . v6.2.0
0 tyl pping by Markko Legonkov, 1.62M downloads @ Options

We moved here: http://entityframework-extensions.net/

* Build, en bekijk de .csproj file via Edit
<ltemGroup>
<PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer" Version="3.0.0" />
<PackageReference Include="Microsoft.EntityFrameworkCore.Tools" Version="3.0.0">

<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>

</PackageReference>
</ltemGroup>

HoGent 13

Entity Framework Core — To a new
database (Code First workflow)

De persistentieklasse (DbContext)

HoGent

De persistentieklasse

» Maak een klasse aan die erft van DbContext

o “this derived context represents a session with the database,
allowing you to query and save data”

c Maak een folder Data binnen het project
> Voeg een klasse ApplicationDbContext toe

- erf van DbContext (namespace Microsoft.EntityFrameworkCore):
voorziet in alle functionaliteiten van EF om met de database te
communiceren

using Microsoft.EntityFrameworkCore;

namespace BeerhallEEData

{

public class ApplicationDbContext:DbContext

{
i
i

HoGent 15

De persistentieklasse

» DbContext(namespace
Microsoft.EntityFrameworkCore)

DbContext
Domain Classes
(Code-First) * EntitySet
* Querying To DB

* Change Tracking

* Persistence

* Manage Relationship

* Caching

* QObject
Materialization

HoGent

16

De persistentieklasse

» Configureer de database provider

o Meer op https://docs.microsoft.com/en-
us/ef/core/miscellaneous/configuring-dbcontext

o DbContext vereist een instantie van DbContextOptions(Builder).
* In console app : override OnConfiguring
* In web app: dependency injection

public class ApplicationDbContext:DbContext
{
protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)

{

var connectionstring =

@"Server=.;Database=Beerhall;Integrated Security=True;";
optionsBuiIder.UseSqIServer(connect‘ionstring);|

}

Deze code wordt uitgevoerd bij het
aanmaken van een nieuwe instantie
van ApplicationDbContext

HoGent

Tip : typ in override en dan krijg je een lijst van de methodes '/

https://docs.microsoft.com/en-us/ef/core/miscellaneous/configuring-dbcontext

ApplicationDbContext”

De persistentieklass (i T

» Pas program.cs aan

class Program

{

Indien de database
static void Main(string[] args) bestaat dan wordt deze

{ eerst verwijderd.
using (ApplicationDbContext context = new ApplicationDbC t())
{ De database wordt
context.Database.EnsureDeleted(); serd indi d
context.Database.EnsureCreated(); | BecreeerdIndien deze

Console.WriteLine("Database created"); nog niet bestaat

}
}
}

» Run. De database wordt gecreéerd.

» using: https://docs.microsoft.com/en-
us/dotnet/csharp/language-reference/keywords/using-
statement

HoGent 18

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement

De persistentieklasse

» Bekijk het resultaat

o View > SQL Server Object Explorer
 Klik op knop “Add SQL server”, server name = . (of localhost)

SQL Server Object Explorer * A X I
| ¢ s
A ﬂ? SOL Server
[E (localdb)\ProjectsV13 (SQOL Server 13.0.4001.0 - EDU\ks:
4 = (SQL Server 14.0.2027 - EDU\ksa607)
- Databases
P System Databases
- i Bakery
F E Beerhall
P Tables
p Views

o Of bekijk de database in SQL Server Management Explorer (zie
verder)

HoGent 19

Entity Framework Core — To a new
database (Code First workflow)

Aanmaken Domain model volgens code first
workflow

HoGent

EF Code First workflow

» Bouwen van domein model adhv de code first
workflow

1.

Al

9

Pas het domein model aan: creéer een nieuwe
domeinklasse of wijzig een bestaande klasse, voeg
associaties toe, ...

Drop en creéer de database
Bekijk de gegenereerde tabellen
Pas, indien nodig, de mapping aan

Herhaal vorige stappen tot de database correct is
aangemaakt

Vul de database met sample data
Commit

HoGent 21

EF Code First workflow

HoGent

STAP 1

/Maak domein model ah

Inamespace BeerhallEF.Models

{

| public class Brewer

{

] #region Properties

public int Brewerld { get; set; }

public string Name { get; set; }

public string Description { get; set; }

public string ContactEmail { get; set; }

public DateTime? DateEstablished { get; set; }
public string Street { get; set; }

public int? Turnover { get; set; }

#endregion

namespace BeerhallEF.Data

{
public class ApplicationDbContext : DbContext

{

public DbSet<Brewers Brewers { get; set; }

STAP 2

Genereer de database\

Brewers
Column Name Data Type Allow Nulls

% Brewerld int O
ContactEmail rvarchar(MAX)
DateEstablished datetime2(7)
Description nvarchar{MAX)
Name nvarchar[MAX)
Street nvarchar[MAX)
Turnover int

|

22

EF Code First workflow

» Best practice : Streef naar kleine stappen

HoGent

23

Stap 1: domein model

» Pas “indien nodig” de ApplicationDbContext klasse aan

o Bevat een DbSet voor elke domeinklasse waarvoor een
overeenkomstige tabel in de database bestaat

public class ApplicationDbContext : DBContext

{

public DbSet<Brewer=

}

Brewers

{ get; set; }

* “indien nodig”:

* EF doet aan type discovery (zie verder)

- Aggregate roots (zie verder)

HoGent

24

Stap 1: domein model

o DbSet (hamespace System.Data.Entity)
* ~ Repository

* Lijst van (in memory) objecten van een bepaald type die de
persistentielaag ter beschikking stelt

* Deze lijst kan je bevragen a.d.h.v. Ling to Entities (zie verder)

HoGent

25

Stap 2: genereer de database

» Run de applicatie

o De database bevat nu een tabel Brewers. EF Code First
hanteert “convention over configuration”.

» Bekijk de database

o SQL Server Object Explorer : Tabel Brewers : (dubbelklik toont
ontwerp tabel)

Marne Data Type Allow Mulls
=0 Brewerld int]
ContactEmail nvarchar{MAK)
DateEstablished datetime2(7)
Descripticn nvarchar({MAX)
Mame nvarchar(b AK)
Street nvarchar(b AK)
Turnowver int
L]

HoGent 26

Stap 2: genereer de database

» Bekijk de database

o Of start SQL Server Management Studio
* Connecteer met . of localhost
* Je kan hier een ERD aanmaken van de tabellen

 Klap Beerhall open, rechtsklik “Database Diagrams” > New
database diagram. Selecteer de gewenste tabellen.

- Selecteer de tabellen op het diagram, klik Tabel view > Standard
voor onderstaande weergave

Celumn Mame Data Type Allow Mulls

37 Brewerld int
ContactEmail nvarchar(PAX])

DateEstablished datetime?(7)
Descripticn nvarchar(bAK)

Marme nvarchar(fAK)
Street nvarchar(PAX])

Turnowver int

O & EEEEE O

HoGent

27

EF Conventies bij mappen naar db

» EF gebruikt voor het omzetten van een klasse naar een
tabel in de database volgende conventies:
o Elke klasse wordt een tabel

Elke property wordt een kolom in de tabel
Primary Keys

(0]

(@)

o

Enums

O

Opm: dit zijn conventies, we zullen later zien hoe we dit zelf
kunnen customizeren

HoGent 28

EF Conventies bij mappen naar db

» Conventie: een klasse wordt een tabel
> naam tabel
* |Is die van de DbSet of indien geen DbSet, de naam van de klasse

o de klasse moet voldoen aan volgende voorwaarden:
* public visibility
* not sealed

- De klasse moet ook opgenomen zijn als DbSet property in de
DbContext, of vernoemd worden in OnModelCreating of

navigeerbaar zijn via navigational properties in een opgenomen
model

HoGent 29

EF Conventies bij mappen naar db

» Conventies: elke property wordt een kolom in de tabel

° naam kolom wordt de naam van de property

+ voorbeeld: property Turnover, klasse Brewer=> kolom Turnover, tabel Brewers
o datatype kolom (wordt gekozen door de Data Provider)

C# datatype SQL server datatype m

string nvarchar(MAX) yes

bool bit no
int int no
float real no
double float no
decimal decimal(18, 2) No
DateTime Datetime2(7) No

voor de nullable versies van
deze types (bool?, int?, ...)
wordt Allow Nulls yes...

o de property moet voldoen aan volgende voorwaarden:

* moet getter en setter hebben
 de setter hoeft niet public te zijn

HoGent

30

EF Conventies bij mappen naar db

» Conventies: bepaling van de Primary Key
o De property met naam ld of <classname>Ild wordt de PK

* niet hoofdlettergevoelig

* voorbeeld:
* In klasse Brewer: property Id, ID, Brewerld, BrewerlD, ...

o Property van type int, long, short

- autonummering: een identity kolom
o Property van type string

- geen autonummering, type nvarchar(450)
° Property van type Guid

* geen autonummering, type Guid

HoGent

31

EF Conventies bij mappen naar db

» Conventies: Enum property
o wordt gemapt naar een kolom van het type int
- als property nullable is dan NULL allowed anders niet

* hetis de ordinale waarde van de enum die wordt opgeslaan in de
tabel

o er wordt geen aparte tabel voorzien met de mogelijke
waarden van de enum

o Voorbeeld: zie later klasse Course en Enum Language

» Conventies : Spatial data : Point type

o Meer op https://docs.microsoft.com/en-
us/ef/core/modeling/spatial

HoGent 32

https://docs.microsoft.com/en-us/ef/core/modeling/spatial

EF Conventies bij mappen naar db

» Conventies

o Voorbeeld: EF mapping Brewer klasse -> Brewers tabel

public class Brewer

{

|#regi0n Properties

public int Brewerld { get; set; }

public string Name { get; set; }

public string Description { get; set; }

public string ContactEmail { get; set; }

public DateTime? DateEstablished { get; set; }
public string Street { get; set; }

public int? Turnover { get; set; }

#endregion

HoGent

mapped by convention

a
»

Brewers
Celumn Mame Data Type Allow Mulls

% Brewerld int]
ContactEmail nvarchar(MAX)
DateEstablished datetime2(7)
Descripticn nvarchar(fAAK)
Marme nvarchar(MAK)
Street rvarchar(MAX)
Turnover int

L]

33

EF Conventies bij mappen naar db

» Conventies
o QOefening : Hoe wordt de klasse Beer gemapt?

public class Beer

{

#region Properties

public int Beerld { get; set; }

public string Name { get; set; }

public string Description { get; set; }

public double? AlcoholByVolume { get; set; }

public bool AlcoholKnown => AlcoholByVolume.HasValue;
public decimal Price { get; set; }

#endregion

HoGent

34

EF Code First workflow

» Voldoet de mapping? Fluent API to the rescue

HoLent

Entity Framework Core — To a new
database (Code First workflow)

Fluent API

HoGent

Fluent API

» Voldoet de (gegenereerde) db niet dan kan je per
klasse opgeven hoe de klasse gemapt dient te worden
naar een tabel in de database
o Maak in de Data folder een folder Mapping

o Per klasse die gemapt wordt naar een tabel maak je een
klassen aan

- Implementeer de interface IEntityTypeConfiguration<T>
 Configure methode : definieert de mapping adhv Fluent API

namespace BeerhallEEData.Mapping
{
class BrewerConfiguration : IEntityTypeConfiguration<Brewer>
{
public void Configure(EntityTypeBuilder<Brewer> builder)

{

h

J
}
HoGent

37

Fluent API

> |n de Klasse ApplicationDbContext, methode
OnModelCreating geef je deze klasse op

- Wordt aangeroepen bij aanmaken van de eerste instantie van de

context. Dit wordt dan gecached, dus alle andere instances maken
hier gebruik van

* ModelBuilder: definieert het model. Dit wordt gebruikt om de
CLR classes te mappen met database schema.

ApplicationDbContext.cs

protected override void OnMaodelCreating(ModelBuilder modelBuilder)

{
base.OnModelCreating(modelBuilder);

modelBuilderApplyConfiguration(new BrewerConfiguration());

i

HoGent

38

Fluent API

» Mappen van een klasse naar een tabel in de database

* Mappen van tabelnaam
* Mappen van primary key

* Mappen van de properties <~ kolommen

* Enkel de zaken die afwijken van de conventies dien je in de
mapping op te nemen.

- Je kan ook opgeven dat een klasse niet gemapt dient te worden
naar een tabel

HoGent

39

Fluent API

» Mappen van tabelnaam/Uitsluiten van properties

ToTable(String) Configures the table name to be mapped to.
lgnore<TProperty> Excludes a property from the model so that it will not be mapped to the
database.

* Voorbeeld

class BrewerConfiguration : |[EntityTypeConfiguration<Brewer>

i
public void Configure(EntityTypeBuilder<Brewer> builder)

i
builderToTable("Brewer");

builderlgnore(t == t.ContactEmail);

i

1

HoGent 40

Fluent APIl: Mappen klasse

» Definiéren van de sleutel

HasKey<TKey> Configures the primary key property(s) for this entity type.

- Enkelvoudige sleutel : bestaande uit 1 property

class BrewerConfiguration : IEntityTypeConfiguration<Brewer>

{

public void Configure{EntityTypeBuilder<Brewer> builder)

{
builderToTable("Brewer");

/{/Mappen primary key
builderHasKey(t == t.BrewerId}l:|

i
i

- Samengestelde sleutel : bestaande uit meerdere properties.
Bvb een OrderlLijn heeft een samengestelde sleutel bestaande uit
Orderld en Productld

-I::;.Hasll(ley[t => neu\:r {t.liflrderld, t.Productld}); |

HoGent i

Fluent APIl: Mappen klasse

» Mappen van properties naar kolommen
* HasColumnName(naam): opgeven van de kolomnamen
* IsRequired(true/false): Optioneel of verplicht (NOT NULL)

* HasMaxLength(maxlengte): de maximale lengte van de kolom =>
nvarchar(maxlength)

* HasColumnType(type): SQL type van de kolom opgeven
- HasDefaultValue(waarde): defaultwaarde kolom bij creatie record

* HasDefaultValueSQL(sql fragment): sql fragment voor berekenen
van de defaultwaarde

* HasComputedColumn(sqgl-expressie): voor een berekende
kolomwaarde. Hier geef je SQL server expressie op

* HasField(field): EF zal de waarde automatisch aan field toekennen
ipv via de setter van de property

HoGent .

Fluent APIl: Mappen klasse

» Mappen van properties naar kolommen

o Voorbeeld

HoGent

class BrewerConfiguration : |[EntityTypeConfiguration<Brewer>

{
public void Configure(EntityTypeBuilder<Brewer> builder)

{
builderToTable("Brewer");
//Mappen primary key
builderHasKey(t == t.Brewerld);

[/properties

builder.Property(t == t.Name)
.HasColumnName("BrewerName")
IsRequired()
.HasMaxLength(100});

builderProperty(t => t.ContactEmail)
.HasMaxLength(100});

builder.Property(t => t.5treet)
.HasMaxLength(100});

43

Fluent APIl: Mappen klasse

» Mappen van properties naar kolommen

o Generated Properties

- Conventie: Voor primary keys van type int of Guid genereert de
database een waarde bij toevoegen (autonummering of identity)
* Fluent API
* ValueGeneratedNever(): database genereert geen waarde

* ValueGeneratedOnAdd(): De database genereert een waarde bij
toevoegen.

* ValueGeneratedOnAddOrUpdate(): De database genereert een
waarde bij elke opslag. (Gebruikt voor concurrency, zie verder)

* Voorbeeld :

builder.Property(t == t.Brewerld)
."nfalueGeneratEanAdd{};|

HoGent 1

Fluent APIl: Mappen klasse

» Mappen van properties naar kolommen

o Read-only properties

- Conventie: Properties met enkel een getter worden “by
convention” niet gemapped naar een kolom in de database.

* Oplossing
* Gebruik een private setter

* OF igv readonly property: {
zorg voor een expliciete mapping
en voorzie een constructor. Voor de
argumenten geldt dat de naam en
type argument = naam en type property)

* Voorbeeld : zie later Location klasse.

builder.Property(t => t.PostalCode);
builder.Property(t == t.Name};I

HoGent

public class Location

#region Properties
public string PostalCode { get; |

public strin

Hendregion
e |dr':,:_ on

#region Construct
public Location(string postalCode, string name)

{

PostalCode = postalCode;
Mame = name;

h

e u:ir-:g on

45

Fluent APIl: Mappen klasse

» Mappen van properties naar kolommen

* Concurrency

* In multi-user omgeving, indien meerdere gebruikers dezelfde records
wijzigen

* Last-in-wins updating :
* Enkel gebruiken indien kans op collision heel klein

“update Brewers set name=@name, street=@street, ... where brewerld=@ brewerld";

* Timestamp-based updating (optimistische locking)

* In tabel hou je timestamp (of rowversion) kolom bij met tijdstip laatste
wijziging. Indien deze gewijzigd is sinds het opvragen van gegevens
(daar haal je timestamp ook op), dan mislukt de update

“update Brewers set name=@name, street=@street, timeStamp=@timeStamp, ...
where brouwernr=@brouwernr and timeStamp=@oldTimeStamp,

+ Ofwel eigen kolom definiéren hiervoor (IsConcurrencyToken)

HoGent 46

Fluent APIl: Mappen klasse

* Concurrency
 Default: last in wins.

* Optimistic concurrency: geen locking tussen opvragen en update, wel

controle van bepaalde properties mogelijk bij update.
* Gebruik hiervoor best een TimeStamp kolom :

= in C# datatype byte[].
* De mapping

In klasse Brewer{
public Byte[] Timestamp { get; set; }

In de methode Configure
builder.Property(p => p.Timestamp)
.ValueGeneratedOnAddOrUpdate()
.IsConcurrencyToken();

HoGent

47

Fluent APIl: Mappen klasse

» Klassen die niet in de database voorkomen

o Voorbeeld: klasse XXX mag niet gemapt worden naar een
tabel in de database

ApplicationDbContext.cs
public class ApplicationDbContext : DbContext {

protected override void OnModelCreating(DbModelBuilder modelBuilder) {
modelBuilder.lgnore<XXX>();

1}

o Zie documentatie: including/excluding Types

HoGent 45

Fluent APIl: Mappen klasse

STAP 1
/Maak domein model aan

using System;
Inamespace BeerhallEEModels

{

| public class Brewer
{
1 #region Properties
public int Brewerld { get; set; }
public string Name { get; set; }
public string Description { get; set; }
public string ContactEmail { get; set; }
public DateTime? DateEstablished { get; set; }
public int? Turnover { get; set; }

public string Street { get; set; }

#endregion

HoGent

STAP 3

/Drop/create database

public class ApplicationDbContext : DbContext

i
protected override void OnConfiguring{DbContextOptionsBuilder opﬁonsBuilder)Q

protected override void OnMadelCreating(ModelBuilder modelBuilder)
{
base.OnModelCreating(modelBuilder);
modelBuilder.ApplyConfiguration(new BrewerConfiguration());

}

public DbSet<Brewer> Brewers { get; set; }

}

class BrewerConfiguration : IEntityTypeConfiguration<Brewer>
{
public void Configure(EntityTypeBuilder<Brewer> builder)

{
builderToTable("Brewer");

J//Mappen primary key
builderHasKey(t == t.Brewerld);

//properties

builderProperty(t => t.Name)
.HasColumnName("BrewerName")
IsRequired()
.HasMaxLength(100};

builder.Property(t => t.ContactEmail)
.HasMaxLength(100};

builder.Property(t == t.Street)
.HasMaxLength(100};

builder.Property(t == t.Brewerld)
ValueGeneratedOnAdd();

-

49

MName Data Type ‘ Allow Nulls|

=@ Brewerld int O
[| ContactEmail nvarchar{100)
[| DateEstablished datetime2(7)
[| Description nvarchar(MAX)
B BrewerMame nvarchar(100)]
[| Street nvarchar(100)
[| Turnover int

Fluent APIl: Mappen klasse

» Fluent api
o Voorbeeld: EF mapping Brewer klasse -> Brewer table

public class Brewer

{
#iregion Properties | Mame | Data Type | Allow Mulls |
| ™ Brewerld int]
publicint Brewerld { get; set; } Mapped with fluent api ContactEmail nvarchar(100)
public string Name { get; set; } > DateEstablished datetime2(7)
public string Description { get; set; } Description nvarchar(MAX)
pubI!c strlngltontactEmall { g-et; set; } BremerName nvarchar(100) 0
public DateTime? DateEstablished { get; set; } —
. . Street rvarchar{100)
public string Street { get; set; } -
- T int i
public int? Turnover { get; set; } | | umove "

#endregion

HoGent 50

Fluent APIl: Mappen klasse

> Time to Commit : Create class Brewer and table Brewer

table Brewer”

commit “Add class Brewer and

HoGent

51

Fluent API

o Oefening 1 : (Stappen tussen [] kan je skippen)
- Voeg de klasse Beer toe aan het project (zie volgende slide)

Voeg DbSet voor Beer toe

[Run de applicatie]
[Bekijk de gegenereerde database]

Voeg mapping toe zodat het resultaat als volgt gemapt wordt

Run de applicatie

public class Beer

{
#region Properties
Mame Data Type Allow MNulls | |
L. 0 Beerld int]

public int Beerld { get; set; }

bli . N { t set- } AlcoholByYolume float
pu !C str!ng ame. g.E » SEL Description rvarchar{MAX)
pubI!c string Description { get; set; } i> Narme varchar(100) 0
public double? AlcoholByVolume { get; set; } Brice decimal(18.2) O
public bool AlcoholKnown => AlcoholByVolume.HasValue; =
public decimal Price { get; set; } &

Fluent API

o Qefening 1:

public class Beer

{

#iregion Properties

public int Beerld { get; set; }

public string Name { get; set; }

public string Description { get; set; }

public double? AlcoholByVolume { get; set; }

public bool AlcoholKnown => AlcoholByVolume.HasValue;
public decimal Price { get; set; }

#endregion

#region Constructors
protected Beer()

{
j

public Beer(string name) : this()

{

Name = name;

}

#endregion

Mame Data Type Allow Mulls | |
w0 Beerld int]
AlcoholByVolume float
[:> Description nwvarchar(MAkK)
Mame rvarchar{100)]
Price decimal(18,2)]
]
Merk op :

Een bier moet een naam en prijs
hebben bij creatie => constructor

EF gebruikt deze constructor als de
parameter overeenkomt met een
parameter/property conventie. Anders
dien je een default constructor te
voorzien (kan je protected maken). Dit
geldt niet voor associaties >3

Entity Framework Core — To a new
database (Code First workflow)

Associaties

HoGent

EF : Associaties

» Conventies

o “By convention, a relationship will be created when there is
a navigation property discovered on a type. A property is
considered a navigation property if the type it points to can
not be mapped as a scalar type by the current database
provider.”

o Relationships that are discovered by convention will always
target the primary key of the principal entity. To target an
alternate key, additional configuration must be performed
using the Fluent API.

HoGent 55

EF: Associaties

» Terminologie

(e}

Principal/Primary key: De property(s) that uniquely identifies the
principal entity. This may be the primary key or an alternate key.
Foreign key: The property(s) in the dependent entity that is used to
store the values of the principal key property that the entity is related
to.

Principal entity: This is the entity that contains the primary/alternate
key property(s). Sometimes referred to as the ‘parent’ of the
relationship.

Dependent entity: This is the entity that contains the foreign key
property(s). Sometimes referred to as the ‘child’ of the relationship.
Navigation property: A property defined on the principal and/or
dependent entity that contains a reference(s) to the related entity(s).
Collection navigation property: A navigation property that contains
references to many related entities.

Reference navigation property: A navigation property that holds a
reference to a single related entity.

Inverse navigation property: When discussing a particular navigation
property, this term refers to the navigation property on the other end
of the relationship.

HoGent 56

EF : Assocaties

» Verschillende soorten associaties in domein
1. Bi-directionele associaties (fully defined relationships)
2. Geen Foreign Key property
3. Associaties in 1 richting (single navigation property)

public class Blog public class Blog public class Blog

blic int Blogld { get; set; } o)) . - . . _—
Dubl%CI: . ninl :getlsetl : public int Blogld { get; set; } public imt ElogId { get; set;]
prbTe mhme LS e public string Url { get; set; } public string Url { get; set; }

public List<Post>» Posts { get; set; }

3 public List<Post> Posts { get; set; } public List<Post> Posts { get; set; }
T h
public class Post
' o public class Post public class Post
public int PostId { get; set; }
public string Title { get; set; } L -
public string Content { get; set; } public int PostId { get; set; } public int PostId { get; set; }
public string Title { get; set; } public string Title { get; set; }
public int BlogId { get; set; } public string Content { get; set; } public string Content { get; set; }
public Blog Blog { get; set; } T
b public Blog Blog { get; set; }
T

HoGent 57

EF Associaties : mapping conventies

» Conventies: associaties worden relaties in de db

- Een navigation property moet voldoen aan volgende
voorwaarden
 public
- de setter mag private zijn, hoeft zelf niet aanwezig te zijn.
- een collection moet het type ICollection<T> implementeren
* je instantieert de collection in de default constructor

- wordt default gemapt naar
- een 1:n relatie.

- De FK met de naam <principal key property name> wordt in de
dependant tabel toegevoegd en ALLOWS NULL

 Cascading Delete is None

HoGent 58

EF Associaties : mapping conventies

» Conventies: associaties worden relaties
* Instantiatie collections: HashSet<T> versus List<T>:

HoGent

geen duplicaten toegestaan duplicaten toegestaan
* override eventueel Equals en

GetHashCode inklasse T
* methode Add(T) retourneert een

boolean
geen volgorde op elementen volgorde op elementen
bv. Add(T), Contains(T) bv. Insert(index, T), IndexOf(T), ...
enorm snel te bepalen of element tot trager te bepalen of een element tot
de collectie behoort, element de collectie behoort, element
toevoegen, weghalen toevoegen, weghalen

* https://stackoverflow.com/questions/150750/hashset-vs-list-
performance

59

http://performance

EF Associaties : mapping conventies

mapped by convention

» Voorbeeld

o Pas de klasse Brewer aan.
* Voeg onderstaande properties toe

public ICollection<Beer> Beers { get; '

public int NrOfBeers => Beers.Count;

* Instantieer de associatie in de default constructor

Beers = new HashSet<Beer>();

—_—
Brewer Fo=——"< JBeer
Column Mame Data Type Allaw Mull: = Column Mame Data Type Allow Mulls

% Brewerld int | % Beerld int O

¢ ContactEmail nvarchar(100) AlcoholByVolume float
DateEstablished datetime2(7) [Brewerld int]

Description nvarchar(MAK) Description nvarchar(WAX)

BrewerMame nvarchar{100)] Mame nvarchar(100] |

Street nvarchar(100) Price decimal(18, 2) O

0 | Turnover int - |

H 1 3

EF Code-first workflow

STAP 3

STAP 1
PM>update-database \

STAP 2

\

Voeg associatie toe Voeg mapping toe

N

/

HoGent

Brewer
Column Mame Data Type Allow Mull: =
public ICollection<Beer> Beers { get; } G Brewerld int O
ContactEmail nvarchar(100)
public int NrOfBeers => Beers.Count; Datebstablished datetimez(7)
Description nvarchar{MAX])
BrewerMame nvarchar(100) O
Street nvarchar(100)
Turnover int -
4 »
Beer
Column Mame Data Type Allow Mull: =
7 Beerld int O
AlcoholByVolume float
Brewerld int
Description nvarchar(MAX)
MName nvarchar(100) O
Price decimal(18, 2) [l -
4 »

N

Ny

61

Fluent APIl: mappen associaties

» 1:n
o |dentificeer de navigation property die een associatie
definieert
* Vb. property Beers in klasse Brewer

- Deze associatie moet volgende relatie worden in de database :

- “Een Brouwer is gekoppeld aan meerdere Bieren, maar een Bier is
gekoppeld aan exact 1 Brouwer”

* Mappen gebeurt in 4 stappen

1. Definieer het eerste deel van de relatie, hier “een Brouwer
is gekoppeld aan 0, 1 of meerdere bieren”.
HasOne()/HasMany(): geef de navigation property
waarvoor je relatie mapt op

* Vb. builder.HasMany(t=>t.Beers)

HoGent 62

Fluent APIl: mappen associaties

2. Dan koppel je terug met WithOne()/WithMany() voor de
omgekeerde richting.

* Voorbeeld : Een Brouwer is gekoppeld aan meerdere Bieren,
MAAR een Bier is gekoppeld aan 1 Brouwer

- Igv associatie in 1 richting: gebruik de parameterless overload
builder.HasMany(t=>t.Beers)
.WithOne()

- lgv bidirectionele associatie : geef als parameter de navigation
property op.

* Vb. Stel dat de Beer klasse een property Brewer zou hebben
builder.HasMany(t=>t.Beers)

.WithOne(t=>t.Brewer)

HoGent 63

Fluent APIl: mappen associaties

» 1:n
3. IsRequired(true/false) : een verplichte relatie. Dit bepaalt of
de FK kolom al dan niet NULL mag zijn.

* Voorbeeld :

builder.HasMany(t=>t.Beers)
WithOne()
IsRequired()

HoGent o

Fluent APIl: mappen associaties

» 1:n
4. OnDelete

- Cascade: Gerelateerde entities worden ook verwijderd.

* ClientSetNull (default): De foreign key properties in dependent
entities worden op null geplaatst (enkel voor nullable FK’s). Enkel
voor de childs geladen in memory, niet de childs in de database

- SetNull : De foreign key properties in dependent entities worden
op null geplaatst (enkel voor nullable FK’s). Voor de childs geladen
in memory en in de database (maar niet alle db laten dit toe)

* Restrict: De delete operatie wordt niet toegepast als er

gerelateerde entities zijn
. [/Mapping Associations
Voorbeeld builderHasMany(t => t.Beers)
MWithOne()
IsRequired()
.OnDelete(DeleteBehaviorCascade);

HoGent 65

Fluent APIl: mappen associaties

» 1:n
5. Mogelijks nog een stap 5: Als de FK property bestaat en

de naam niet de conventions volgt dan moet je
dit expliciet mappen naar de FK kolom.

o ,HasForeignKey(t=>t.FKProperty)

Foreign Key

The convention for a foreign key is that it must have the same data type as the principal entity's primary key property and
the name must follow one of these patterns:

® <navigation property name><principal primary key property name>Id
® <principal class name><primary key property name>Id
® <principal primary key property name>Id

HoGent 66

Fluent APIl: mappen associaties

mapped by fluent api

» Voorbeeld

o Map de property Beers in Brewer. De relatie: 1..n, verplicht, FK
Brouwerld, Cascading delete.

° Run de applicatie
A 4
Brewer Beer *
Column Name Data Type Allow Mull: = Column Mame Data Type Allow Nulls -~
% Brewerld int] % Beerld int]
ContactEmail nvarchar(100] <a——ocf | AlcoholByVolume float
DateEstablished datetime2(7) [Brewerld int J]
Descripticn nvarchar(MAK) Description nvarchar(hAK)
BrewerMame nwarchar{100)] Mame nwvarchar{100)]
Street rwvarchar(100] Price decirnal(18, 2)]
Turnowver int -] -
4 4

HoGent 67

EF Code-first workflow

STAP 1

Voeg associatie toe

public ICollection<Beer> Beers { get;

public int NrOfBeers => Beers.Count;

N

STAP 2

Voeg mapping toe

~

STAP 3

/Genereer de database\

HoGent

J//Mapping Associations
builderHasMany(t => t.Beers)
MWithOne()
IsRequired()
.OnDelete{DeleteBehaviorCascade);

Brewer
Column Name Data Type Allow Mulls

@ Brewerld int O
ContactEmail nvarchar(100)
DateEstablished datetime2(7)
Description nvarchar(MAX)
LocationPostalCode nvarchar(3)
BrewerMame nvarchar(100) O
Street rvarchar{100)
Turnover int

(|

Beer
Column Name Data Type Allow Nulls

7 Beerld int O
AlcoholByVolume float
Brewerld int O
Description nvarchar{Max)
Mame rvarchar{100) O
Price decimal(18, 2) O

O

\Z

68

Fluent APIl: mappen associaties

» DbSet
* Doordat Brewer een ICollection<Beer> bevat, zal EF een
table Beer aanmaken. Het volstaat een DbSet te voorzien
voor het root element Brewer
- Een DbSet laat toe om de bieren rechtstreeks op te vragen,
toe te voegen, aan te passen en te verwijderen. Enkel als dit
nodig is voor de applicatie voeg je de DbSet toe

public class ApplicationDbContext : DbContext

i
protected override void OnConfiguring{DbContextOptionsBuilder DptiI:mSBuilder}IZI

protected override void OnModelCreating({ModelBuilder modelEuiIder}D

public Db5Set<Brewer> Brewers { get; set; }
J/public DbSet<Beer> Beers { get; set; } type discovery

}

Q’A commit “Add class Beer

&) and mapping”

HoGent <>

Fluent APIl: mappen associaties

De properties bevatten
geen setter

Je zal de properties expliciet
> Voeg de klasse Location toe.(Immutable class!) moeten mappen!

o Pas Brewer klasse aan. Voeg property Location toe

o Voeg DbSet<Location> toe, daar we in de applicatie alle locaties
wensen op te vragen

o Map via de Fluent API
 PostalCode is maximaal 5 posities en is de key
« Naam is maximaal 100 posities en verplicht
- Relatie: 1:N, optioneel, geen cascading delete

o Run de applicatie en controleer de database. Merk op de naam van
de FK <navigation property name><principal key property name>.
Wens je de naam te veranderen voeg dan bvb
.HasForeignKey(“PostalCode”) of
.HasForeignKey(nameof(Location.PostalCode)) toe

o Commit “Add class Location and mapping”

» Oefening

HoGent

70

Fluent APIl: mappen associaties

» Oefening

(0]

Voeg de klasse Course en enum Language toe.

Pas Brewer klasse aan. Voeg property Courses (ICollection)
toe, instantieer in de constructor. Merk op een bi-directionele
associatie

Voeg DbSet toe
Map via Fluent API
- Title is verplicht en maximaal 100 posities

(@)

(0]

O

- relatie: 1:N, verplicht, cascading delete
° Run

o

Commit “Add class Course and mapping”

HoGent 71

Fluent APIl: mappen associaties

» 1:1
- Zie documentatie https://docs.microsoft.com/en-
us/ef/core/modeling/relationships

HoGent

72

https://docs.microsoft.com/en-us/ef/core/modeling/relationships

Fluent APIl: mappen associaties

» N:M
* N:M zonder klasse die de “joined” table representeert
wordt nog niet ondersteund door EF Core.

* Je moet de klasse die de joined table voorstelt expliciteren
en daarna map je de N:M als 2 1:N relaties.

« Zie documentatie https://docs.microsoft.com/en-
us/ef/core/modeling/relationships

HoGent 73

https://docs.microsoft.com/en-us/ef/core/modeling/relationships

Fluent APIl: mappen associaties

» Oefening

o N:M
* Neem eerst de documentatie door over N:M relaties:
https://docs.efproject.net/en/latest/modeling/relationships.html
#many-to-many

- Voeg klasse Category toe. Een Category kent de brouwers,
brouwers kent zijn categorieén niet. Creéer extra klassen indien
nodig.

* Voe de mapping toe.

« Commit

HoGent o

https://docs.efproject.net/en/latest/modeling/relationships.html#many-to-many

Entity Framework Core — To a new
database (Code First workflow)

Overerving

HoGent

EF Overerving : mapping conventies

» Conventies: overerving
o Domein: overerving

« Basisklasse: al dan niet abstract

* Voorbeeld Course basisklasse. Online- en
OnsiteCourse zijn subklassen.

o DB: Table per Hierarchy
- dit is de default voor mappen overerving

:’ Cursus
{ Abstract Class

P

1 tabel met de properties van alle klassen (basisklasse en

subklassen)
* Naam tabel = naam base class (in meervoud)

HoGent

- Tabel bevat een extra kolom met de naam Discriminator
(nvarchar(max)) , met als waarden de namen van de (afgeleide)
klassen. Hierdoor kan je weten welke klasse het record voorstelt.

76

EF Overerving : mapping conventies

» Conventies: overerving
o EF gaat niet zelf op zoek naar base klassen...

- configurationklassen voorzien, of,

* maak een DbSet aan voor de superklasse én de base klassen die
je wens op te nemen in de hierarchie, of,

ﬁﬁﬁiiﬁ-ﬁEgéfgiﬁﬁFéé; Courses { get; set; }
ﬁﬁﬁiiﬁ-ﬁEgéégﬂﬁiiﬁéEGurse> OnlineCourses { get; set; }

ﬁﬁﬁiiﬁ-ﬁEgéfgﬂﬁéiféEGurze> OnsiteCourses { get; set; }

- geef in OnModelCreating aan dat er subklassen zijn

modelBuilder.Entity<OnlineCourse>().HasBaseType<Course>();
modelBuilder.Entity<OnsiteCourse>().HasBaseType<Course>();

»»»»»

=l Methods

HoGent o

EF Overerving : mapping conventies

» Conventies: overerving
> voorbeeld

M Brewer

o
[J
Domain
| Course A
Class
= Properties
& Courseld : int
& Credits: int?
K Title: string
B Methods & Language
@, Course]) [+ 1 overload) .
iy
r [.
| OnsiteCourse A
Class (o)
ol OnlineCourse A
Clazs
+C
& Fields Tl
@, _startDate: DateTime = Properties
=l Properties & Url:string
K& From: TimeSpan? = Methods

& NumberOfDays: int
K StartDate : DateTime
&l : TimeSpan?

= Metheds

@, OnsiteCourse() (+ 1 over...

HoGe

nt

ﬁ Courses : [Collection cCourmapped by Cé

vention

Database (1 tabel)

Language

Enum

Mederlands
Francais
English

A

'3’* COnlineCourse() (+ 1 overload)

Mame Data Type Allow Mulls
w0 Courseld int]
Brewerld int]
» Credits int
[Discriminator nvarchar(PAX)]
Language int L]
Title nvarchar(PAX)
Url nvarchar(PAX)
From time(7)
MurnberOfDays int
StartDate datetime2(7)
Till time(7)

Discriminator kolom bevat hier dus de waarde
OnlineCursus of OnsiteCursus (indien Cursus een
concrete klasse was dan kon de waarde ook mogelijks
Cursus zijn). Kolom url zal bvb enkel een waarde
hebben als Discriminator = OnlineCursus

Fluent api: mappen overerving

» De mapping

https://docs.efproject.net/en/latest/modeling/relational/inhe
ritance.html /{Inheritance : TPH, and renaming the discriminator

builderHasDiscriminator<string>("Type")

o CourseCo nfigu ration .HasValue<OnlineCourse>("Online")

.HasValue<OnsiteCourse>{"Onsite");

public }:Iass OnlineCourseConfiguration : IEntityTypeConfiguration<OnlineCourse> Il Als data uit de database wordt
{ | .
public void Configure(EntityTypeBuilder<OnlineCourse> builder) gelezen mag de setter niet
{ worden uitgevoerd daar datums
//Properties in het verleden kunnen liggen.
builder.Property(t => t.Url).HasMaxLength(100); Maak hiervoor gebruik van
}

BackingField. EF zal gebruik
maken van het attribuut
_startDate ipv de setter van de

}

public class OnsiteCourseConfiguration : IEntityTypeConfiguration<OnsiteCourse> |

{

public void Configure(EntityTypeBuilder<OnsiteCourse> builder) property StartDate. Meer op
{ https://docs.microsoft.com/en-
//Properties] }
builder.Property(t => t.StartDate) us/ef/core/modellng/backlng—
.HasField(" startDate"); field

} 73

https://docs.efproject.net/en/latest/modeling/relational/inheritance.html
https://docs.microsoft.com/en-us/ef/core/modeling/backing-field

EF extra’s: Toevoegen van een index

» Toevoegen van indexen,....

° Bvb unique Index op naam, voor een Bier
Pas mapper aan

b.HasIndex(t => t.Name).IsUnique(true);

HoGent

80

EF extra’s: owned types

» 1:1
o Stel bvb een klasse Address, zonder key. Brewer bevat een
property StreetAddress van type Address.

public class Address : — —— -
[public Address StreetAddress { get; set; |

public string Street { get; set; }
public Location Location { get; set; }

}
> Via owned types wordt geen nieuwe tabel aangemaakt voor
address maar wordt address kolommen toegevoegd aan de

tabel Brewer

builder.OwnsOne(t => t.StreetAddress);

- Of als Address een private property is, gebruik dan de string versie
* Builder.OwnsOne(typeOf(Address),”StreetAddress”)

StreetAddress_Street nvarchar{MAax)
HOGent StreetAddress_LocationPosi nvarchar(s) 31

EF extra’s: owned types

» 1:n
o Stel Brewer bevat een |_ij:St van ShippingCenters

public ICollection<Address> ShippingCenters { get; set; |
°c De mapping

builder.OwnsMany(t => t.ShippingCenters);
o Genereert een table Address met samengestelde sleutel:

Name Data Type Allow Nulls
=0 Brewerld int]
wo Id int [l
Street nvarchar{MAX)
LocationPostalCode nvarchar(s)

o Meer op https://docs.microsoft.com/en-
us/ef/core/modeling/owned-entities

HoGent

82

https://docs.microsoft.com/en-us/ef/core/modeling/owned-entities

EF extra’s: table splitting

» Mappen van meerdere klassen naar 1 tabel
o Meer op https://docs.microsoft.com/en-us/ef/core/what-is-

new

HoGent

83

https://docs.microsoft.com/en-us/ef/core/what-is-new/

Nog enkele tips

» DbContext

o EF verzorgt de mapping van domain <-> database.

o EF doet aan Type Discovery. Dit betekent dat EF alle klassen
zal mappen
+ waarvoor DbSet gedefinieerd in klasse die erft van DbContext
« of vermeld staan in de OnModelCreating methode
* waarnaar verwezen wordt via navigation properties

* Je kan een klasse uitsluiten via de fluent api : .Ignore

* Voorbeeld : Stel DbSet voor Brewer gedefinieerd => dan wordt tabel Brewers
aangemaakt/gemapt, maar door de navigation properties ook tabel Beers,
Locations en Courses. Online- en OnsiteCourses, Categories wordt niet
aangemaakt/gemapt tenzij je hier ook een DbSet voor voorziet of ze vermeld
in OnModelCreating

> Map enkel de aggregate roots

- Aggregate = “a cluster of associated objects that we treat as a unit
for the purpose of data changes”

HoGent ”

Nog enkele tips

» Entity types met constructors

o Wanneer EF Core instanties van een type maakt, zoals bvb bij het ophalen van
een brouwer, wordt eerst de default constructor aangeroepen en wordt
vervolgens elke property ingesteld via de setter op de waarde uit de database.
Als EF Core echter een geparametriseerde constructor vindt met
parameternamen en -typen die overeenkomen met die van de properties,
roept deze in plaats daarvan de geparametriseerde constructor met waarden
voor die properties aan en wordt dan elke property die niet in de constructor
voorkomt expliciet ingesteld.

o Niet alle properties vereisen constructor parameters. EF Core zal deze instellen
na het aanroepen van de constructor via de setter van de property

o De parameter types en namen in de constructor moeten matchen met de
property types en namen, behalve dan dat properties Pascal-cased zijn, terwijl
parameters camel-cased zijn

o EF Core kan geen navigation properties instellen via de constructor!!! In klasse
Course bvb hebben we een default constructor nodig, anders krijg je een
runtime fout : System.InvalidOperationException: No suitable constructor found
for entity type 'Course'. The following constructors had parameters that could
not be bound to properties of the entity type: cannot bind 'brewer' in
'Course(string title, Language language, Brewer brewer)'.

HoGent 85

Seeding van de database

HoGent

Seeden van de database

» Ga eerst naar de branch “Seeding-Querying-saving-
data”

» Seeden = Vullen van de database met data.
o De klasse Brewer werd aangepast en bevat nu extra methodes

* Constructors
- AddBeer

- AddCourse
* DeleteBeer

HoGent 87

Seeden van de database

» DbContext

HoGent

Add{object)

Add=TEntity> (TEntity)

AddRange(object(])

AddRange(System. Collections.Generic.[Enurmnerable< ohject>)
Attach(ohject)

Attach<TEntity= (TEntity]

AttachRange(object(])

AttachRange(System. Collections.Generic.|Enumerable< object=]
Db Context()
DbContextiMicrosoft.EntityFrameworkCore.DbContextOptions)
Dispose()

Entry(chject]

Entry < TEntity> (TEntity)
OnConfiguringiMicrosoft.EntityFrameworkCore. Db ContextOptionsBuilder)
OnModelCreating(Microsoft.EntityFrameworkCore.ModelBuilder)
Remove(chject]

Remowve«<TEntity> (TEntity)

RemoveRange(object(])

eeceaeee

*

e aeaaad

*

RemoveRange(Systern. Collections. Generic.\Enumerable<chject=)

o0 aaa

SaveChanges()

public class DbContext
Member of Microsoft.EntityFrameworkCore

Summary:

& DbContext instance represents a session with the database and can be used to query
and save instances of your entities. DbContext is a combination of the Unit Of Work and
Repository patterns.

88

Seeden van de database

» DbSet

HoGent

Add(TEntity)
AddRange(System.Cellections.GenericlEnumerable< TEntity=]
AddRange(TEntity[])

Attach(TEntity)

AttachRange(System. Collections.Generic.lEnurnerable< TEntity=)
AttachRange(TEntity[])

DhbSet()

Remove(TEntity)
RemoveRange(Systern.Collections.Generic.lEnumerable< TEntity=)
RermowveRange(TEntity[])

Update(TEntity)
UpdateRange(System.Collections.Generic.[Enurmerable<TEntity>)
UpdateRange(TEntity(])

2ee0eee

eeeaaea

public abstract class DbSet<TEntity>
where TEntity : class
Member of Microsoft.EntityFrameworkCore

Summary:
A MicrosoftEntityFrameworkCore.DbSet™ can be used to query and save instances of

TEntity. LING queries against a Microsoft.EntityFrameworkCore.DbSet™ will e translated

into queries against the database.

The results of a LINGQ query against a Microsoft.EntityFrameworkCore.DbSet™ will contain
the results returned from the database and may not reflect changes made in the context

that have not been persisted to the database. For example, the results will not contain
newly added entities and may still contain entities that are marked for deletion.

89

Seeden van de database

» De klasse BeerhallDatalnitializer in de Data folder

public class BeerhallDatalnitializer ..
. Bekijk de code.

private readonly Applicati onDbContext _context;

public BeerhallDatalnitializer Applicati onDbContext context)

{
_context = contest;
1
EILIhrICUI:r'Id nitializeData()] .] .
{ Als de locaties reeds bestaan, worden ze niet opnieuw gecreéerd
if {|_context.Locations. Aryl))
{
Location bavikhove = new Location { Name = "Bavikhowe ", PostalCode = "8531"
Location roese lare = new Location { Name = "Roeselare”, PostalCode = "8300" }; Aan een DbSet kan je
Location puurs = new Location { Mame = "Puurs”, PostalCode = "2870" }; . .
Location leuven = new Location { Name = "Leuven”, PostalCode = "3000" }; nieuwe Objecten

Location oudenaarde = new Location { Name = "Oudenaarde”, PostalCode ="9700" };

Location affligem = new Location { Name = "Affligem”, PostalCode ="1790" }; toevoegen
Location gent = new Location { Name = "Gent", PostalCode = "9000" };
Location]] gemeenten = SaveChanges voegt de
{ bavikhove, roeselare, puurs, leuven, oudenaarde, affligem,gent }; .
_rcontext Locations AddRange (ge meenten); LOCatIes toe daan de
_context SaveChanges(); database
Brewver bavik = new Brever("Bavik", bavikhove, "piilcwem 23"
_context. Brewers. Add{bavik); H HE e H
e . Con'text doet aan ChangeTracking, houdt alle wijzigingen bij
bavik AddBeer("Witte ke rke”, 1.0m); tot je SaveChanges aanroept. Zal dan voor alle wijzigingen

bavik AddBeer|"Witte ke rke Speciale”, 1.8m);

bavik AddBeer{"Witte ke rke Rosé”, 1.3m); INSERT, UPDATE of DELETE instructie creéren=> Transactie

Seeden van de database

» Aanroepen van de BeerhallDatalnitializer
° Program.cs

public static void Main(string[] args)
{

using (ApplicationDbContext context = new ApplicationDbContext())

{
‘ //context.Database.EnsureDeleted();
//context.Database.EnsureCreated();

new BeerhallDatalnitializer(context).InitializeData();
Console.WriteLine("Database geinstantieerd");

}

)

Als je telkens met dezelfde database (met dezelfde data) wenst te starten, kan je de
database eerst verwijderen en daarna terug creéren.

HoGent 91

Querying Data

HoGent

Ling to Entities

» LINQ to Entities

Bevragen van de database
Communicatie met de DbContext

* Aggregaties, projecties, filteren, sorteren, ... mogelijk
Strongly typed queries!
Retourneert: Entiteiten
» Achter de schermen genereert EF de overeenkomstige
gueries. Kan je bekijken in
* Een profiler

o]

(0]

(@)

o

* SQL Server Profiler: openen via Tools menu in SQL Server
Management Studio

- Een logger klasse die je aan je project toevoegt :
https://docs.microsoft.com/en-us/ef/core/miscellaneous/logging

HoGent

93

Querying data

» Ling to Entities
o Basic Query (zie ook opm op volgende slides)

o Loading Related Data — Eager Loading en explicit loading(zie ook
opm op volgende slides)

o Client vs. Server Evaluation, lees ook
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-3.0/
Restricted client evaluation

o Tracking vs. No-Tracking
o Raw SQL Queries
o How Query Works

» Neem de documentatie door op
https://docs.microsoft.com/en-us/ef/core/querying/

» Vervolledig de overeenkomstige oefeningen in Program.cs

HoGent

https://docs.microsoft.com/en-us/ef/core/querying/basic
https://docs.microsoft.com/en-us/ef/core/querying/related-data
https://docs.microsoft.com/en-us/ef/core/querying/client-eval
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-3.0/
https://docs.microsoft.com/en-us/ef/core/querying/tracking
https://docs.microsoft.com/en-us/ef/core/querying/raw-sql
https://docs.microsoft.com/en-us/ef/core/querying/overview
https://docs.microsoft.com/en-us/ef/core/querying/

Querying data

» Zie program.cs,
o plaats QueryData(context); uit commentaar

» Wens je de gegenereerde query te zien, maak dan
gebruik van de ApplicationDbContextWithLogging
klasse.

o Meer op https://docs.microsoft.com/en-
us/ef/core/miscellaneous/logging

using (ApplicationDbContext context = new ApplicationDbContextWithLogging())

* De queries worden gelogd in de Console

HoGent 95

https://docs.microsoft.com/en-us/ef/core/miscellaneous/logging

Querying data

---Loading all brewers, ordered by name---
Bavik
» Het resultaat s
De Leeuw
Duvel Moortgat
InBev
iPalm Breweries
Roman

---Loading the brewer with id 1---
Brewer with id 1: Bavik

|---Filtering the brewers: brewers whose name starts with b---
Bavik

f---Filtering the brewers: brewers from Leuven--
InBev

---Filtering the brewers: brewers with more than 4 beers, ordered by name---
Bavik

Duvel Moortgat

fInBev

----Filtering the brewers: brewers with a beer starting with the letter B. ---
Bavik
InBev
Roman

---All beers from brewer with id 1---
Bavik Pils 8,4

Wittekerke 1,8

Wittekerke Speciale 1,8

Wittekerke Rosé 1,3

Ezel Wit 1,8

Ezel Bruin 2,5

HoGent

---A11 brewers from Leuven, print the name and the number of beers---
InBev 5

___All brewers from Leuven, print the name and the number of beers - Use projections---
InBev 5

---Loading multiple relationships: all brewers, print name, location and number of beers--

Bavik Bavikhove 3]
De Graal 8
De Leeuw a
Duvel Moortgat Puurs 6
InBev Leuven 5
Palm Breweries 4
Roman Oudenaarde 4

---Including multiple lewvels: All brewers from the first category---
Bavik

Palm Breweries

Roman

---Explicit loading: all english courses from bawvik--

Brewing beer Advanced ---Delete : remove Gentse Gruut---

L . . Number of brewers before delete: B
---Explicit loading: all courses from bawvik-- Number of brewers after delete: 7

Brewing beer Advanced
Bierbrouwen basis

---Inheritance--
Brewing beer Advanced

NMumber of cities before insert:7

. Number of cities after insert:8
---All brewers with NrOfBeers > 4--

InBev: &
Bavik: 6
Duvel Moortgat: 6

---Add: Create Brewer Gentse Gruut, Rembert Dodoensdreef, 9888 Gent ---

---Add in ICollection : add Course 'Hoppe'---

---Update : Give Gentse Gruut a new address in Roeselare---

---Transactions, multiple operations in 1 save, change the turnc

---Create Brewer De Koninck, Mechelsesteenweg 291, 2818 Antuwerpe

---Removing relationships: Remove the first Beer from Bavik - De

Basic queries : enkele opm

» Single(OrDefault)/First(OrDefault)

o Opvragen 1 brouwer (vb metid 1)

_brewer = context.Brewers
SingleOrDefault(b => b.Brewerld == 1);

[b].[ContactEmail], [b].[DatekEstablished], [b].[Description], [b].[LocationPostalCode],
eet], [b].[Turnover]

* SingleOrDefault(): retourneert null als brouwer niet bestaat. Throwt
exception als er meer dan 1 brouwer aan criterium voldoet

- Single() : Exception als brouwer niet bestaat. Throwt exception als er
meer dan 1 brouwer aan criterium voldoet

* FirstOrDefault(): neemt eerste brouwer die aan criterium voldoet. Null
als brouwer niet bestaat. Geeft geen fout als er meerdere brouwers aan
criterium voldoen. (is performanter dan SingleOrDefault)

* First(): Exception als geen brouwers gevonden
* Merk op: Select Top(2) laat toe om de nodige controles te doen

HoGent o8

Basic queries : enkele opm

» Filteren: Where
o 1 klasse

Console WriteLine("\n-—Filtering the brewers: brewers whose name starts with b-—-");
_brewers = context.Brewers
Where(b => b.Name.StartsWith("b"))
.OrderBy(b => b.Name)
Jolist();
SELECT [b].[BrewerId], [b].[ContactEmail], [b].[DateEstablished], [b].[Description], [b].[LocationPostalCode], [b]

.[BrewerName], [b].[5treet], [b].[Turnover]
FROM [Brewers] AS [b]

WHERE [b].[BrewerMame] LIKE MN'b" + N°%’
¥ [b].[Brewertame]

* Opm : als EF3.0 een where conditie die het niet kan vertalen naar
een SQL Query dan throwt het een exception. Oplossing switch
naar IEnumerable en gebruik dan Ling to Objects

var specialCustomers =
context.Customers
JMhere(c => c.Name.StartsWith{n)})
AsEnumerable() // switches to LINQ to Objects
Where(c =» IsSpecialCustomer(c));

HoGent 99

Basic queries : enkele opm

» Filteren: Where
° via navigational props => JOIN!!

Console. WriteLine("\n---Filtering the brewers: brewers from Leuven--");
_brewers = context.Brewers
Where(b => b.Location.Name == "Leuven")

.OrderBy(b => b.Name)
JTolist();

[b].[LocationPostalCode], [b]

SELECT [b].[BrewerId],].[ContactEmail], [b].[DateEstablished], [b].[Description],
|. [Breweriame], [b].[Street], [b].[Turnover], [b.Location].[PostalCode], [b.Location].[MName]
FROM [Brewers] AS [b]

LEFT JOIN [Locations] AS [b.Location] ON [b].[LocationPostalCode] = [b.Location].[PostalCode]

ORDER BY [b].[BrewerName], [b].[LocationPostalCode]

Distinct() : geeft enkel de
verschillende terug

100

HoGent

Basic queries : enkele opm

o Voorbeeld filteren op * associatie via Any (subQuery)
* Brouwers met een bier waarvan de naam met een B begint.
Gebruiken associatie *

_brewers = context.Brewers
Where(br => br.Beers.Any(b => b.Name.ToUpper().StartsWith("B"}))

Tolist();

[br].[Description], [br].[LocationPostalCode]

BrewerId], .[ContactEmail], [br].[DateEstablished],
"Mame], [br].[Street], [br].[Turnover]

[Beers] AS [b]

WHERE UPPER([b].[Mame]) LIKE N'B' + N'%' AND ([br].[BrewerId]

Heel wat methodes beschikbaar:
- Contains

- Count

- Except

- Intersect

HoGent 101

Loading Related Data: opm

» Projection: Select: Opvragen specifieke properties van
brouwers
o Kan performantie verbeteren

Console WriteLine(™\n-—All brewers from Leuven, print the name and the number of beers---");
_brewers = context.Brewers

Include(b => b.Beers)

Where(b => b.Location.Name == "Leuven")
JTolist();

Console WriteLine("\n-—-All brewers from Leuven, print the name and the number of beers - Use projections---");
var brewers2 = context.Brewers
Where(b => b.Location.Name == "Leuven")
Select(b => new { b.Name, NumberOfBeers = b.Beers.Count })
Tolist();
f':.[Euﬂ:ac:Emaii:J [h:.[Dé:EES:ahliéhed:J [h:.[Descrip:iﬁﬂ:J [b].[LocationPostalCode], [b]
1. [b]-[Turnover], [b.Location].[PostalCode], [b.Location].[Name],

FROM [Beer
WHERE

FROM [Brewers] AS [b]
LEFT JOIN [Locations] AS
Y 3 W -7 0y -

[b.Location] ON [b].[LocationPostalCode] = [b.Location].[PostalCode]

- 3 ¥ = -

Loading Related Data: opm

» Overerving
o OfType

_brewer = context.Brewers
Include(b => b.Courses)
.SingleOrDefault(b => b.Name == "Bavik");
var courses = _brewer.Courses.Of Type<OnlineCourse>().ToList();

HoGent 103

Saving data

HoGent

DbContext en updates

» DbContext verzorgt de object Tracking

> Bij opvragen van objecten (na een select query) worden deze in de
Cache (Identity Map) geplaatst.
o De DbContext houdt in de cache voor elke entiteit 2 objecten bij
* Het object (entiteit) zelf
* De ObjectStateEntry : nodig voor change tracking
* Originele waarde van object
- EntityState : unchanged, added, updated, deleted
o SaveChanges : persisteert wijzigingen naar database

- Alle entiteiten in cache worden overlopen. Als EntityState verschilt van
unchanged wordt insert, update of delete instructie gegenereerd. Enkel
de gewijzigde properties worden gepersisteerd.

« = Unit of Work (alle wijzigingen tegelijk) en TransactieBeheer (alle
wijzigingen lukken of worden gerollbackt)

HoGent 105

Saving Data

» Meer op https://docs.microsoft.com/en-
us/ef/core/saving/
o Basic Save
o Related Data
o Cascade Delete

» Lees de documentatie en pas dit toe op de
voorbeelden in program.cs. Plaats uit commentaar:

#region "DbContext en updates”
SavingData(context);
#endregion

» Zorg ervoor dat de database nu telkens eerst

using (ApplicationDbContext context = new ApplicationDbContext())

verwijderd wordt en {
. . context.Database.EnsureDeleted();
Opnleuw gecreee rd Wordt context.Database.EnsureCreated();

new BeerhallDatalnitializer{context).InitializeData();

HO Gent ConsoleWriteLine("Database created");

https://docs.microsoft.com/en-us/ef/core/saving/

Saving data: opm

» Toevoegen van een object met een identity kolom

o 2 queries naar de database
* Insert

- Select : opvragen van de gegenereerde sleutel en aanpassen van
het object

Console.WriteLine("\n---Add: Create Brewer Gentse Gruut, Rembert Dodoensdreef, 9000 Gent ---");
Brewer gruut = new Brewer("Gentse Gruut")
{
Street = "Rembert Dodoensdreef",
Location = context.Locations.Single(g => g.Name == "Gent")
|7
context.Brewers.Add(gruut);
context.SaveChanges();

ier] ([ContactEmail], [DateEstablished], [Description], [BrewerName], [PostalCode], [S5treet], [Turnover])

@p4, @p>, @p6);

HoGent 107

Saving data: opm

» DbContext verzorgt ook de associaties
o Opgelet met deletes via navigational properties

_brewer = context.Brewers.Single(b => b.Name == "Bavik");
Beer beer = _brewer.Beers.First();
_brewer.DeleteBeer(beer);

context.SaveChanges();

If 2 cascade delete is configured, the child/dependent entity will be deleted from the database, see Cascade Delete for more
information. If no cascade delete 1s configured, the foreign key column in the database will be set to null (if the column does

not accept nulls, an exception will be thrown).

o Als cascade delete = no action. Beer blijft bestaan maar is niet
langer gekoppeld aan brouwer. Als beer ook verwijdert moet
worden:

_brewer = context.Brewers.Single(b => b.Name == "Bavik");
Beer beer = _brewer.Beers.FirstOrDefault();
brewer.DeleteBeer(beer);
context.Beers.Remove(beer);
context.SaveChanges();

HoGent 108

Appendix

HoGent

8. Extra’s : Interessante links

» De documentatie: https://docs.microsoft.com/en-
us/ef/core/

» Introductie tot EF
Core: http://www.learnentityframeworkcore.com/

HoGent 110

https://docs.microsoft.com/en-us/ef/core/
http://www.learnentityframeworkcore.com/

8. Extra’s: EF Migrations

» Installeer ook de Microsoft.EntityFrameworkCore.Tools
als je EF Core commands in powershell gebruikt en
build het project (Zie appendix voor gebruik)

The following Entity Framework cmdlets are included.

Cmdlet Description

Add-Migration Adds o new migration.

Remove-Migration Removes the last migration.

Scaffold-DbContext Scaffolds a DbContext and entity type classes for a specified database.
Script-Migration Generates a SQL script from migrations.

Update-Database Updates the database to a specified migration.

Use-DbContext Sets the default DbContext to use.

» Meer op https://docs.microsoft.com/en-
us/ef/core/miscellaneous/cli/powershell

HoGent 111

https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/powershell

8. Extra’s: EF Migrations

» Bouwen van domein model adhv de Migrations

o

Pas het domein model aan: creéer een nieuwe domeinklasse
of wijzig een bestaande klasse, voeg associaties toe, ...

Maak gebruik van EF Migrations om de database aan te
passen

1. Genereer schema: add-migration

2. Update de database: update-database
Bekijk de gegenereerde tabellen

Pas, indien nodig, de mapping aan

Maak gebruik van EF Migrations om de database verder aan te
passen

Vul de database met sample data
Commit

HoGent 112

8. Extra’s: EF Migrations

» EF Migrations

o Migrations is een manier om aanpassingen in het domein
model ook door te voeren in de database, zonder de database

eerst te verwijderen.

 add-migration: scaffolds een nieuwe migratie en maakt hier een
klasse voor aan met code om de database aan te passen.

- update-database: voert de aanpassingen door in de database.

HoGent 113

8. Extra’s: EF Migrations

STAP 1
/Maak domein model aan

Inamespace BeerhallEF.Models

{

| public class Brewer

{

] #region Properties

public int Brewerld { get; set; }

public string Name { get; set; }

public string Description { get; set; }

public string ContactEmail { get; set; }

public DateTime? DateEstablished { get; set; }
public string Street { get; set; }

public int? Turnover { get; set; }

#endregion

namespace BeerhallEF.Data

{
public class ApplicationDbContext : DbContext

{

public DbSet<Brewers> Brewers { get; set; }

HoGent

STAP 2
PM>add-migration

CreateTableBrewers

STAP 3
/PM>update-database

Inamespace Beerhal [EF Migrations
{
1 public partial class CreateTableBrewers : Migration
{
1 protected override void Up(MigrationBuilder migrationBuilder)
{
migrationBuilder.CreateTable|
name: "Brewers",
columns: table == new
{

Brewerld =table.Column<int={nullzble: fa=e}
Annotation("3ql5ervervalueGenerationStrategy”,
sqlservervalueGenerationStrategy ldentityColumn),

ContactEmail = table Column<string=(nullable: true),

DateEstablished =table.Column<DateTime={nullable: true),

Description = table Column«<string=(nullable: true),

Name = table.Column<string={nullable: true),

Street =table.Column<string=(nullable: true),

Turnaver = table Column<int={nullable: true)

L
] constraints: table ==
{
table.PrimaryKey("PK_Brewers", x == x Brewerld);
1
1

1 protected override void Down{MigrationBuilder migrationBuilder)
{
migrationBuilder.DropTable(
name: "Brewers");

Brewers
Column Name Data Type Allow Nulls

% Brewerld int O
ContactEmail nvarchar(MAX)
DateEstablished datetime2(7)
Description nvarchar({MAX)
Name nvarchar{MAX)
Street nvarchar(MAX)
Turnover int

O

114

8. Extra’s: EF Migrations

» Data Seeding

o https://docs.microsoft.com/en-us/ef/core/modeling/data-
seeding

HoGent 115

https://docs.microsoft.com/en-us/ef/core/modeling/data-seeding

8. Extra’s : Shadow properties

» Properties die geen deel uitmaken van het domein
model. De waarde en state van deze properties wordt
enkel bijgehouden in de Change Tracker

o modelBuilder.Entity<Brewer>()
.Property<DateTime>("LastUpdated");

o Meer op https://docs.microsoft.com/en-
us/ef/core/modeling/shadow-properties

HoGent 116

https://docs.microsoft.com/en-us/ef/core/modeling/shadow-properties

8. Extra’s : Lazy loading

» De gerelateerde data wordt automatisch geladen
wanneer een navigational property gebruikt wordt

o Meer info op https://docs.microsoft.com/en-
us/ef/core/querying/related-data, zie Lazy loading

HoGent 117

https://docs.microsoft.com/en-us/ef/core/querying/related-data

8. Extra’s : Value converters

» Je zou bvb de data kunnen encrypteren alvorens het
wordt opgeslaan in de db

o Meer op https://docs.microsoft.com/en-
us/ef/core/modeling/value-conversions

HoGent 118

https://docs.microsoft.com/en-us/ef/core/modeling/value-conversions

8. Extra’s : Async programmeren

» Van een aantal methods bestaat ook een asynchrone
versie (bvb SaveChangesAsync). Een uitgebreide uitleg
over asynchroon programmeren (async, await) kan je
vinden op onderstaande link

» https://docs.microsoft.com/en-
us/dotnet/csharp/programming-
guide/concepts/async/

HoGent

119

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/

