

 Inleiding ASP.NET MVC

 Hello MVC
Routing

Controller

View

 SnakeEyes

 MVC Flow

 Oefening

2

Inleiding

 The life of an application

4

◦ Request life cycle

5

Click triggers
HTTP
GET/POST

 De web variant van MVC (Model2) : request life cycle

6

Build model

https://docs.asp.net/en/latest/mvc/overview.html

7

https://docs.asp.net/en/latest/mvc/overview.html

 Clean architecture/Onion Architecture

8

 ASP.NET Core architecture diagram following Clean
Architecture.

9

Hello MVC

 Aanmaken project
◦ Maak een nieuwe MVC Core applicatie genaamd HelloMVC

 Create a new project > Kies Visual C# en web als Project type > ASP.NET Core
Web Application. Klik Next

11

 Aanmaken project
◦ Geef de naam van de applicatie in en kies de locatie. Vink place project

and solution in the same directory uit

12

 Stel features in van Web app
◦ Kies voor ASP.NET Core 3.0
◦ Select a template : Empty

 Empty : leeg project.

 API : bouwen van
REST Services

 Web application (Razor Pages)

 Web application (Model-View-
Controller)

 Angular: Web IV

 React.js: Web IV

 Reacht.js and Redux:Web IV

Kies Empty

13

 Authenticatie : No authentication

 In Solution Explorer
 Connected Services: zoals Azure Blob, Azure IoT

Hub,…

 Dependencies : gebruikte assemblies

 Properties : eigenschappen van het project

 Program.cs: ASP.NET Core projecten zijn Console
applicaties die een Web server execution
environment opstarten.

 Startup.cs : Het hart van de applicatie.
Een configuratie bestand, dat wordt uitgevoerd bij de
start up van de webapplicatie – stelt het startpunt en
de omgeving in voor de ASP.NET Core applicatie. Het
creëert services en injecteert dependencies zo dat de
applicatie er gebruik kan van maken.

 Rechtsklik solution in solution Explorer > add
solution to source control 14

 in Windows Verkenner
◦ Rechtsklik de solution > Open folder in file

explorer

 .sln : solution file. xml file met verwijzing naar
projecten,… die solution bevat
(https://msdn.microsoft.com/en-
us/library/bb165951.aspx)

 HelloMVC (= root applicatie)

 File system bepaalt wat in project zit. Je kan
bestanden toevoegen aan de folder en deze
verschijnen automatisch in solution explorer.

 VS zal een nieuw bestand ook compileren.

15

https://msdn.microsoft.com/en-us/library/bb165951.aspx

16

 Program.cs
◦ Bevat een Main methode : ASP.NET Core applications zijn

zelfstandige Console applications die verantwoordelijk zijn
voor de hosting en configuratie (Startup).
 CreateDefaultBuilder methode zal een default hosting

environment creëeren voor je webapplicatie. Een host wordt
opgezet, die een server configureert en ook de applicatie pipeline
 CreateDefaultBuilder is verantwoordelijk voor de creatie en

configuratie van de host. Zie volgende slide.

 UseStartUp : Instantieert de Startup klasse. De runtime zal door de
ConfigureServices gaan en vervolgens Configure uitvoeren. Zie verder
Startup: request pipeline builden.

 CreateHostBuilder(args).Build().Run() : build en start je asp.net
core app. Vanaf nu is de applicatie geen console applicatie meer
maar een asp.net core web app.

17

 Startup.cs
◦ Configuratie en startup code voor asp.net core applicatie

◦ Bevat een StartUp klasse.

18

Program class

 Startup.cs
◦ ConfigureServices:

IoC container wordt
ingesteld.

◦ Configure: bouwt de
request pipeline.

19

 Startup.cs
◦ ConfigureServices methode

 Opzetten van services en IoC Container (dependency injection)

 Service = elk object dat functionaliteit verschaft aan andere delen van
je applicatie. Vb : services.AddControllersWithViews();

 IoC Container

20

 Startup.cs
◦ Configure methode :

 bouwt de http pipeline

21

22

“Configure” voegt
volgende middleware
components toe

• Error handling (voor
development
environments)

• Gebruik van routing

• De endpoints

 Middleware

 Run nu de applicatie.

 De pipeline wordt
opgebouwd en
afgesloten door
app.UseEndpoints.Dit
voert het endpoint uit.

23

env.IsDevelopment() checkt de environment. Open
properties van het project, ga naar Debug >
Environment variables > ASPNETCORE_ENVIRONMENT
(kan ook production of staging zijn)

 Run de applicatie : F5, of Debug > Start Debugging

 In de dropdown kan je de browser selecteren

 Visual Studio
◦ Compileert de applicatie

◦ Start IIS Express, zie notificatie onderaan in taakbalk of
Task Manager). Kiest random een vrije poort.

◦ Opent de browser

 Klik : om te stoppen

24

 Throw een Exception in het begin van app.UseEndpoints.

 Run de applicatie opnieuw.
◦ De pipeline blijft hetzelfde maar nu gaat de ExceptionHandling

Middleware de runtimefout opvangen en een developer
foutpagina retourneren. (In Production wordt dit een
errorpage).

25

 We gaan nu trachten een statische pagina weer te geven
(index.html).

 Add> new folder > wwwroot

 Add>New Item>html

 Run de applicatie: Voeg in de browser de index.html toe
aan de url: We krijgen een 404 opgemaakt door de
browser

26

 We moeten aan de pipeline toevoegen dat er static files
kunnen gebruikt worden. (voor app.useRouting)

 Run de applicatie en voeg index.html toe aan de url.

 Voeg voor app.UseStaticFiles() app.UseDefaultFiles() toe
en dan hoef je index.html niet meer in te geven.

27

 Static files – wwwroot folder
◦ Statische bestanden kunnen opgeslagen worden in elke map

onder de wwwroot folder en worden toegankelijk met een
relatief pad naar die root. Bijvoorbeeld, wanneer u een
standaard web project maakt met Visual Studio, zijn er
meerdere mappen gemaakt in de wwwroot-map - css,
afbeeldingen en js.
De URI heeft toegang tot een afbeelding in de
afbeeldingenmap: http: // <app> / images / <imageFileName>

28

 Verwijder de index.html

 Om MVC te gebruiken dienen we het mappen naar
Controllers in UseEndpoints te configureren als volgt

 Vanaf nu zal de request van de client op zoek gaan naar
een HomeController met een methode Index in de
map Controllers. Zie verder.

29

 Maak de HomeController aan
◦ Voeg een nieuwe map Controllers toe

◦ Rechtsklik Controllers > Add > Controller. Kies MVC Controller
– Empty. Noem de Controller HomeController

◦ Pas de code aan

30

 We krijgen echter een Error.

 Voeg de service toe aan de Dependency Injection
Container.

31

 Nu zien we de pagina.

 Surf nu naar /Home/About -> In chrome krijgen we een
404, Page Not Found. (In explorer een blanco pagina). By
default, voorziet asp.net core geen status code page. De
app retourneert een 404 en een lege response body.
(Bekijk dit in de Chrome developer tools)

 Om toch in status code pages te voorzien : opvangen in de
pipeline : app.UseStatusCodePages()

32

 Convention over configuration

 ASP.NET MVC gebruikt waar mogelijk Convention over
configuration

 3 folders voor de elementen van MVC patroon :

 Controllers folder : bevat de controller klassen. Alle Controller klassen
hebben Controller suffix

 Views folder : 1 subfolder per controller. De naam van de View is de
naam van de methode in de Controller

 Models folder : bevat de domeinklassen, voegen we later toe

33

Hello MVC - URL Routing

 URL Routing
◦ ASP.NET Core MVC gebruikt

 de Endpoint Routing Middleware die binnenkomende HTTP requests
analyseert en mapt op een endpoint (app.UseRouting())

 de Endpoint (dispatch) Middleware, de laatste MW in de pipeline, voert de
endpoint uit. Het roept de bijhorende Action Method in de Controller aan.
Ook bijkomende informatie (parameters) wordt geanalyseerd door de
routing en doorgegeven aan de action methode (model binding). Routes
worden gedefinieerd in startup code of attributes.(app.UseEndpoints())

35

https://docs.asp.net/
en/latest/mvc/control
lers/routing.html

https://docs.asp.net/en/latest/mvc/controllers/routing.html

◦ Pas de HomeController verder aan: Voeg zelf een methode
About en Contact toe en run

◦ Ga naar Home

◦ Ga naar About

◦ Ga naar Contact

◦ URL Routing : analyseert de url.

36

 Controller

37

Routing : wordt uitgevoerd bij elke
request. De url wordt geanalyseerd :

Url : …/Home/Index

Methode About in de HomeController
wordt uitgevoerd als men surft naar de
Url :…/Home/About

namespace

Methode Contact in HomeController
wordt uitgevoerd als men surft naar Url :
…/Home/Contact

Controller klasse : bevat methodes die
uitgevoerd worden bij request van de gebruiker.
O.b.v. de url bepaalt de Routing Middleware

- welke Controller geïnstantieerd zal worden

- en welke methode zal worden uitgevoerd in
die Controller.

HomeController Index methode

 MVC gebruikt een resource centric routing.
◦ Een URL stelt een resource op het web voor (~REST)

◦ Een resource is in ASP.NET MVC een stukje code die de
request afhandelt
 MVC Routing mapt een request (URL) naar een actie methode in een

Controller, eventueel met parameters.

 De URL (exclusief hostname en querystring) wordt hiervoor
opgesplitst in segmenten

38

http://mysite.com/Home/Index?id=1

Segment 1

Segment 2

Querystring, start met een ?
gevolgd door 1 of meerdere
naam=waarde (hier id=1)
gescheiden door een &. Bv
name=Pieters&firstname=Jan

hostname

 URL patronen (Convention based routing)
◦ De URL matching werkt met URL patronen

◦ In een patroon wordt elk segment van een url voorgesteld
door een segment variabele. Een segment variabele is een
naam tussen { }.

 {controller} => de naam van de controller klasse die MVC zal
instantiëren. MVC voegt het woord Controller toe aan de naam.
Bvb Home. De bijhorende controller klasse HomeController.cs.

 {action} => naam van de publieke methode binnen de controller
die MVC zal aanroepen

 Beide zijn voorgedefinieerde segment variabelen

39

pattern: “{controller}/{action}”

 URL patronen

 Deze route mapt enkel met url’s bestaande uit 2 segmenten

 De querystring kan je niet mappen. Dit wordt een parameter van
de betreffende actie methode

40

pattern: “{controller}/{action}”

 URL patronen
◦ Defaultwaarden voor ontbrekende segmenten van URL mogelijk

 action : indien url geen action bevat, roep methode Index aan

 controller : als url geen controller bevat instantieer HomeController

 Dit mapt naar de url’s bestaande uit 0 tot 2 segmenten

41

pattern: "{controller=Home}/{action=Index}";

 URL patronen en custom segmenten
◦ Je kan ook zelf segmenten definiëren

◦ Dit patroon matcht met url’s bestaande uit 3 segmenten.

 {controller} => de naam van de controller klasse die MVC zal
instantiëren. MVC voegt het woord Controller toe aan de naam.
Bvb Home. De bijhorende controller klasse HomeController.cs.

 {action} => naam van de publieke methode binnen de controller
die MVC zal aanroepen

 {id} => een parameter met naam id. De actionmethode moet dan
een parameter id bevatten. Bvb public IActionResult Index(int id)

42

pattern: “{controller}/{action}/{id}”

 URL patronen en custom segmenten
◦ Voor een custom segment kan een defaultwaarde worden

opgeven of kan opgeven worden dat het optioneel is(?)

43

pattern: "{controller=Home}/{action=Index}/{id?}"

 URL patronen en custom segmenten
◦ Voor een custom segment kan ook een route constraint worden

opgegeven

 Meer info op
https://docs.asp.net/en/latest/fundamentals/routing.html#route-
constraint-reference

44

pattern: "{controller=Home}/{action=Index}/{id:int}"

https://docs.asp.net/en/latest/fundamentals/routing.html#route-constraint-reference

 Opzetten van de Routing middleware
◦ De klasse StartUp, methode Configure bevat de instellingen

 UseRouting() : voegt de Endpoint Routing Middleware toe aan de
pipeline. Deze middleware mapt de url met een endpoint en
voegt een Endpoint object toe aan de HttpContext.

 UseEndpoints : voegt Endpoint Dispatch Middleware toe, steeds
als laatste in de pipeline. Voert het endpoint uit.

 Moet worden voorafgegaan door UseRouting()

 MapControllerRoute voegt controller based en Web API routing toe en
definieert een URL patroon van een route (endpoint)

45

Een naam die je aan een bepaalde
route geeft. Willekeurig te kiezen

Het URL patroon en
defaultwaarden voor
ontbrekende onderdelen van het
URL patroon

◦ Men kan het ook op volgende manier declareren:

 name: zelfgekozen naam

 pattern: bevat patroon (sections)

 defaults: bevat default waarden voor pattern values

◦ Onderstaand voorbeeld hebben dezelfde routing.

46

 De routing configuratie
◦ MapControllerRoute : definieert Controller based routing. Elke route

patroon heeft een naam (willekeurig te kiezen), een url patroon en
eventueel een default, constraints of datatokens.

◦ Definieer alle route patronen voor je applicatie in routes
◦ Bij een binnenkomende request zal URL routing de patronen 1 voor

1 overlopen. Het eerste patroon die matcht met de request wordt
uitgevoerd. Plaats dus de meest specifieke route bovenaan.

◦ Routes worden ook gebruikt om URLs te genereren in responses.
Door gebruik van route values en een pattern wordt de url
gegenereerd

◦ Routing is onderdeel van de middleware pipeline dmv de
RouterMiddleware class.

◦ Je kan ook een Route toevoegen aan een Controller (attribute based
routing)

47

 De routing configuratie
◦ Bij binnenkomende request wordt in de endpoints gezocht

naar de eerste match (volgorde is belangrijk)

◦ Voorbeeld

48

url /Regions/Oostvlaanderen =>
Controller Brouwer,
Action=Search, parameter
name=Oostvlaanderen

 Attribute based routing
◦ Voor speciale gevallen in routing
◦ Boven de controller of actionname

 [Route(“home/about”)]

 Public class AboutController{
 [Route(“phone”)]

 Public string Phone(){}

◦ Of als je werkt met controller naam
 [Route(company/[controller])]

◦ Meer op https://docs.microsoft.com/en-
us/aspnet/core/fundamentals/routing?view=aspnetcore-
3.0#use-routing-middleware

49

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-3.0#use-routing-middleware

 Run de applicatie. Surf eens naar …/Shop/Contact. Je
krijgt een 404 status pagina te zien….

50

Requests worden afgehandeld door
Controllers! De URL wordt vertaald
naar een Controller methode. Als de
Controller of methode niet bestaat

wordt niets geretourneerd

Als je in StartUp Configure voor
app.UseStaticFiles,
app.UseStatusCodePages()
toevoegt, wordt een 404 status
pagina getoond

◦ Meer over routing: https://docs.microsoft.com/en-
us/aspnet/core/fundamentals/routing?view=aspnetcore-
3.0#routing-basics

51

“…Controller”
erft van

Controller die
erft van

IController

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-3.0#routing-basics

Hello MVC - De Controller

 Controller
◦ Verantwoordelijk voor

 Verwerken binnenkomende HTTP requests

 Verwerken van de input van de gebruiker, uitvoeren van de
applicatielogica. Eventueel ophalen en opslaan van de gegevens.

 Bepalen van de HTTP response (het antwoord naar de browser :
html pagina, downloaden van een bestand, redirect naar een
andere url,…) en de data die daarbinnen moet worden
weergegeven.

◦ Is een klasse met de actie methodes

◦ Meestal 1 controller per use case. Bevat in feite de
systeemoperaties uit het SSD vertaald naar de naming
conventions voor “Action methods” in ASP.NET MVC

53

 Aanmaken Controller
◦ Rechtsklik op map Controllers > Add > Controller

Kies voor Empty. Vervolgens HelloController als naam.

54

 Aanmaken controller

◦ Maakt in map Controllers een bestand HelloController.cs met
de klasse HelloController aan.
 Convention over configuration: de naam van een Controller klasse

moet eindigen op Controller.

 Erft van klasse Controller uit Microsoft.AspNetCore.Mvc

 Elke publieke methode = action en kan dus opgeroepen worden
adhv url. Deze method zal dan worden uitgevoerd en op het einde
een View retourneren

55

Action

View to show

 Controller aanpassen
◦ Twee action methodes die

tekst
retourneren:

 Index():string

 About(int id):string

 Naam parameter moet
id zijn, zie Startup.cs

56

 Run de applicatie

 Bekijk hoe de routing de mapping tussen URL
en action method in Controller verzorgt
◦ Surf naar (poort varieert, hier 1234)

◦ http://localhost:1234/Hello

◦ http://localhost:1234/Hello/Index

◦ http://localhost:1234/Hello/About/1

◦ http://localhost:1234/Hello/About?id=10
-> querystring wordt naar parameters in methode vertaald

57

http://localhost:1234/
http://localhost:1234/Hello/Index
http://localhost:1234/Hello/About/1
http://localhost:1234/Hello/About?id=10

 Probeer onderstaande Urls uit. Wat gebeurt bij 4,5,6?
1. http://localhost:1234/Hello

2. http://localhost:1234/Hello/Index

3. http://localhost:1234/Hello/Index/1

4. http://localhost:1234/Hello/About

5. http://localhost:1234/Hello/About/abc

6. http://localhost:1234/Hello/About?id=abc

7. http://localhost:1234/Hello/Contact

58

http://localhost:5844/
http://localhost:5844/
http://localhost:5844/
http://localhost:5844/
http://localhost:5844/
http://localhost:5844/
http://localhost:5844/

 De action method
 De action methode handelt een request af. Elke publieke methode

in een controller is callable als een HTTP endpoint. Een HTTP
endpoint is een url

 En moet een antwoord (response) terugsturen naar de browser.

 De response kan een HTML pagina zijn, maar ook een XML bestand,
een JSON bestand, een HTTP redirect , …

 De actie methode retourneert hiervoor steeds een instantie van
ActionResult (een default implementatie van de interface
IActionResult). Deze instantie zal verder worden uitgevoerd door het
MVC framework
(https://docs.asp.net/projects/api/en/latest/autoapi/Microsoft/AspN
etCore/Mvc/IActionResult/)

Pag. 59

https://docs.asp.net/projects/api/en/latest/autoapi/Microsoft/AspNetCore/Mvc/IActionResult/

 IActionResult: https://docs.microsoft.com/en-

us/dotnet/api/microsoft.aspnetcore.mvc.iactionresult?f1url=https%3A%2F%2Fmsdn.microsoft.com%2Fquery%2Fdev16.query%3
FappId%3DDev16IDEF1%26l%3DEN-US%26k%3Dk(Microsoft.AspNetCore.Mvc.IActionResult);k(DevLang-
csharp)%26rd%3Dtrue&view=aspnetcore-2.2

Pag. 60

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.iactionresult?f1url=https%3A%2F%2Fmsdn.microsoft.com%2Fquery%2Fdev16.query%3FappId%3DDev16IDEF1%26l%3DEN-US%26k%3Dk(Microsoft.AspNetCore.Mvc.IActionResult);k(DevLang-csharp)%26rd%3Dtrue&view=aspnetcore-2.2

 ActionResult:
◦ Een default implementation

van Microsoft.AspNetCore.Mvc.IActionResult.

◦ Een abstracte basisklasse met verschillende concrete subklassen

 Elke subklasse is een andere afhandeling van een request

◦ Een instantie wordt door het framework uitgevoerd (Command
pattern) en zal een resultaat terugsturen naar de browser. De
controller moet hem hiervoor alle nodige informatie aanleveren

Pag. 61

https://docs.asp.net/projects/api/en/latest/autoapi/Microsoft/AspNetCore/Mvc/IActionResult/index.html#Microsoft.AspNetCore.Mvc.IActionResult

 ActionResult: https://docs.microsoft.com/en-

us/dotnet/api/microsoft.aspnetcore.mvc.actionresult?f1url=https%3A%2F%2Fmsdn.microsoft.com%2Fquery
%2Fdev16.query%3FappId%3DDev16IDEF1%26l%3DEN-
US%26k%3Dk(Microsoft.AspNetCore.Mvc.ActionResult);k(DevLang-csharp)%26rd%3Dtrue&view=aspnetcore-
2.2

Pag. 62

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.actionresult?f1url=https%3A%2F%2Fmsdn.microsoft.com%2Fquery%2Fdev16.query%3FappId%3DDev16IDEF1%26l%3DEN-US%26k%3Dk(Microsoft.AspNetCore.Mvc.ActionResult);k(DevLang-csharp)%26rd%3Dtrue&view=aspnetcore-2.2

 ActionResult subklassen

Pag. 63

ContentResult the action result sends a response whose body contains a specified object

EmptyResult Represents an ActionResult that when executed will do nothing.

FileResult Represents an ActionResult that when executed will write a file as the response.

JsonResult An action result which formats the given object as JSON.

ObjectResult An ActionResult that will use content negotation to send an object to the clienst

RedirectResult
Sends a response with the HTTP 301, 302, 307 of 308 status code, redirecting the client to a
new url

RedirectToActionResult redirects the client to a specific action in the controller

RedirectToPageResult redirects the client to a specific page

RedirectToRouteResult redirects the client to a URL generated from a specific route

LocalRedirectResult
An ActionResult that returns a Found (302), Moved Permanently (301), Temporary Redirect
(307), or Permanent Redirect (308) response with a Location header to the supplied local URL.

StatusCodeResult
Represents an ActionResult that when executed will produce an HTTP response with the given
response status code. Bevat subklassen OkResult, BadRequestResult, NotFoundResult,…

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.contentresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.emptyresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.fileresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.jsonresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.objectresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.redirectresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.redirecttoactionresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.redirecttopageresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.redirecttorouteresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.localredirectresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.statuscoderesult?view=aspnetcore-2.2

 ActionResult subklassen

Pag. 64

ViewComponentResult An ActionResult which renders a view component to the response.

ViewResult Represents an ActionResult that renders a view to the response

PartialViewResult Represents an ActionResult that renders a partial view to the response.

PageResult An ActionResult that renders a Razor Page.

ForbidResult An ActionResult that on execution invokes AuthenticationManager.ForbidAsync.

ChallengeResult An ActionResult that on execution invokes AuthenticationManager.ChallengeAsync.

SignInResult An ActionResult that on execution invokes AuthenticationManager.SignInAsync.

SignOutResult An ActionResult that on execution invokes AuthenticationManager.SignOutAsync.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewcomponentresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.viewresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.partialviewresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.razorpages.pageresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.forbidresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.challengeresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.signinresult?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.mvc.signoutresult?view=aspnetcore-2.2

 ActionResult en de helper methodes
 De controller maakt gebruik van de helper methodes voor het

aanmaken van een concrete instantie van een ActionResult

 De methode View maakt een ViewResult object aan

 https://docs.asp.net/projects/api/en/latest/autoapi/Microsoft/AspNetCore/
Mvc/Controller/index.html?highlight=Controller

Pag. 65

https://docs.asp.net/projects/api/en/latest/autoapi/Microsoft/AspNetCore/Mvc/Controller/index.html?highlight=Controller

 De klasse
ViewResult:

Pag. 66

 De subklasse ViewResult

Pag. 67

 ActionResult en het command pattern
◦ Command = ActionResult met ExecuteResult methode

◦ ConcreteCommand = ViewResult, JsonResult,….

Pag. 68

Het Command Pattern schermt een aanroep af door middel van een object, waarbij je verschillende
aanroepen in verschillende objecten kan opbergen, in een queue kan zetten of op schijf kan bewaren;

 Pas de controller als volgt aan

 View() : MVC framework rendert de default View. MVC maakt hiervoor
gebruik van naming conventions

69

 Run de applicatie …

70

return View() geeft de instructie aan MVC framework om de default view van de action
methode te renderen. Views die bij een actie horen worden automatisch gevonden als
ze in de directory gezet worden met de naam van de Controller of in de Shared folder
geplaatst worden binnen de Views folder. (=Convention over configuration)

Meer over controllers toevoegen: https://docs.asp.net/en/latest/tutorials/first-mvc-
app/adding-controller.html

https://docs.asp.net/en/latest/tutorials/first-mvc-app/adding-controller.html

Hello MVC - De View

 View: de UI van de applicatie
◦ Bevat enkel en alleen presentatielogica

◦ Een view is een combinatie van html, css, javascript en Razor
(C#). Razor code dient om de data die de Controller aan de View
doorgeeft (model, ViewBag) binnen de HTML pagina te
plaatsen.

◦ De action methode creëert een ViewResult, die wordt
uitgevoerd door de View Engine van het MVC Framework. Deze
zal de View renderen en het resultaat (een html pagina) naar de
browser zal sturen.

◦ De default view engine is the Razor View Engine.

72

HTTP
Request

Routing Controller ViewResult ViewEngine View Response

 Creatie van een View
◦ Vervolgens maak je per methode in de Controller die een view

retourneert een view aan.

◦ Rechtsklik de methode Index > Add View.

 De naam van de view is de naam van de methode uit de
controller, extensie is .cshtml

 Men kan kiezen uit meerdere templates. Kies Empty (without
model). Vink Use a layout page uit (Vink use layout page uit)

◦ De code voor de View wordt gegenereerd

73

C
o

n
v
e
n

ti
o

n
o

v
e
r

c
o

n
fi

g
u

ra
ti

o
n

 Creatie van een View
◦ Views worden toegevoegd aan de Views folder.

◦ per Controller is er een map, met de naam van de controller in
de Views folder: Views/[ControllerName] map

◦ Per methode in de Controller die een View retourneert is er
(in principe) een view. De naam van de view is de naam van
de methode uit de Controller, extensie is .cshtml

74

C
o

n
v
e
n

ti
o

n
o

v
e
r

c
o

n
fi

g
u

ra
ti

o
n

◦ De view is een standaard template voor een html pagina.

◦ Bovenaan staat aangeduid (@ = razor syntax) dat er geen
gemeenschappelijke layout (zie later) gebruikt wordt.

◦ Voeg een title “Hello” toe in de html. En een p-tag in de body:
<p>Hello from Index View</p>

◦ Run applicatie.

◦ Het is natuurlijk niet de bedoeling dat we enkel html gaan gebruiken
in de view. Dan kunnen we ook static pages gebruiken.

75

 Razor View Engine
◦ Razor is een markup syntax voor het toevoegen van server based

code in een webpagina. De Razor syntax bestaat uit Razor markup,
C# en HTML.

◦ Rendert html
◦ Razor syntax ondersteunt C#. Gebruikt @ om van HTML over te gaan

naar C#
 Code nuget: @ gevolgd door 1 C# instructie die inline geëvalueerd en

gerenderd wordt. Razor herkent zelf einde van instructie

 Code blok : @{…}. bevat meerdere C# instructies

◦ Voorbeeldjes
 <div> Hello MVC, @DateTime.Today.ToShortDateString() :)</div>

 Razor weet hier dat een spatie na de methode ToShortDateString geen
geldige identifier is, dus schakelt hij terug over naar HTML

 @{Layout=null}
 Maak geen gebruik van de gemeenschappelijke layout

76

 Pas de code aan in index.cshtml

77

 View en dynamische output
◦ Taak van Controller om de data voor de View te genereren

◦ Taak van View om die data in de html pagina weer te geven

◦ Controller bevat property ViewBag van type dynamic.
“Dynamic means you can dynamically get/set values and add any
number of additional fields, properties, methods without need of
strongly-typed classes. Properties on a dynamic object are defined at
run-time, so to add a new property you just use it”

◦ In de ViewBag kan informatie geplaatst worden die
doorgegeven wordt aan de View page bij aanroep van de
View() methode. Maak hiervoor gewoon een property aan
voor de ViewBag en plaats er de waarde in.

78

 View en dynamische output
◦ Controller genereert de data die de View zal moeten renderen

◦ Index.cshtml

79

 View en dynamische output
◦ De View kan de ViewBag lezen (is ook een property van View)

 @: Razor code nugget
Start met een @ teken
gevolgd door de C# statement die html/tekst retourneert

 Razor engine zal C# instructie uitvoeren en het resultaat sturen
naar de output en bovendien html encoden.

 < wordt vertaald naar < en > naar > …

80

 Samenvatting
◦ Een actie methode in de Controller handelt een request af en stuurt

een resultaat, response genaamd, (meestal html) terug naar de
browser.

◦ Indien we HTML retourneren naar de browser moet de actie methode
een ViewResult object retourneren. Dit erft van de basisklasse
ActionResult.

◦ ActionResult is de abstracte basisklasse voor alles wat een action
methode naar de browser kan retourneren. Hier wordt het Command
Pattern gebruikt. Een ActionResult stelt een Command voor, die het
resultaat van een action methode bevat en dat het framework zal
uitvoeren in naam van de action methode.

◦ Voor het aanmaken van een ViewResult roept een actie methode de
View() methode aan.

◦ View() maakt een instantie van ViewResult (subklasse van ActionResult)
aan en geeft deze aan het MVC framework die ExecuteResult aanroept.
Hierdoor wordt een HTML pagina gegenereerd o.b.v. een View template
(.cshtml) en de data aangeleverd door de controller en wordt deze naar
de browser gestuurd.

81

 Samenvatting

82

Hilton, J. (2019). MVC vs Razor Pages - A quick comparison. Retrieved from https://jonhilton.net/razor-pages-or-mvc-a-quick-
comparison/

Snake Eyes - Een demo…

 Demo SNAKE Eyes GAME

 Ofwel start je met een nieuw project

 Ofwel clone je https://github.com/WebIII/06thmvcintroduction

en kan je inpikken bij een commit door het aanmaken van een
branch

84

https://github.com/WebIII/06thmvcintroduction

 Demo SNAKE Eyes GAME
◦ Ontwerp

◦ De starter MVC web applicatie

◦ Model

◦ Controller

◦ View

85

 Ontwerp

86

 Ontwerp domain

87

 Maak een nieuw Project aan, noem dit
SnakeEyesGame.

88

 Geef de volgende service mee in Startup.cs

89

 Vervolgens configureer je je applicatie door in
Startup.cs (Middleware) volgende toe te voegen aan
de Configure method (Pipeline).

90

 Maak een nieuwe folder Models aan in je project. Dit
bevat de domain klassen

 Voeg de nieuwe klassen SnakeEyes en Dice toe aan de
Models folder.

 Implementeer zowel Dice als SnakeEyes

91

 Aanmaken van een class diagram in .net core web app
kan via een omweg 
◦ Right click Models folder > Add > new Item.
◦ Zoek op xml, en kies een xml file. De extensie .cd is belangrijk.

Noem het bvb DCD.cd
◦ Je krijgt 2 meldingen. Don’t worry!
◦ Right click DCD.cd > Open with

> XML(Text) Editor.
◦ Pas de code aan en sla op.

◦ Nu kan je DCD.cd openen en klassen aanmaken/bestaande
klassen droppen

92

 Klasse Dice
Namespaces die binnen de code gebruikt
worden.

Namespace van de klasse Dice

Automatic property

93

◦ Methode Roll()
 Maakt gebruik van een Random generator.

 Zoek klasse Random op in Help/Object Browser.
 Hoe genereer je een getal tussen 1 en 6?

 Declareer attribuut van type Random en maak instantie aan
 Bij declaratie

 Of in de constructor. Initialiseer ook Pips op 6.

 Codeer de methode Roll.

94

 Klasse SnakeEyes
◦ Vervolledig de methode Play.

◦ Merk op :

 Properties Eye1 en Eye2 hebben
geen setter

 Gebruik Regions

95

 Ontwerp ?

96

Hou bij de methodenamen van de
actiemethodes rekening met de
conventies

- Index is beter dan StartSpel

- Play

 Maak een nieuwe controller aan : HomeController

97

 Maak een nieuwe controller aan : HomeController
◦ Declareer een private attribuut _snakeEyes van type

SnakeEyes
◦ Declareer een action method Index

◦ De Index methode zal
 een instantie aanmaken van SnakeEyes

 de methode View(…) aanroepen en de nodige gegevens via een
model doorgeven

98

 De domeinklasse SnakeEyes bevat de gegevens die
nodig zijn in de UI, de view

Eye1
Eye2

Zal op het
einde als
oefening
worden
toegevoegd.

Total

99

 HomeController - Index :
 Maak een instantie aan van SnakeEyes

 Roep View aan en geef een instantie van SnakeEyes door. Verwijs
naar de juiste namespace. Retourneer het resultaat.

100

 Maak nu een nieuwe MVC View aan. Rechtsklik Index
method > Add view

101

 Geef titel in en voeg bovenaan het model in.

@model = strongly typed versie van ViewPage (generic class). De ViewPage bevat nu een Model.

Merk op

- Gebruik de fully qualified name

- Of voeg using toe

@using SnakeEyesGame. Models

@model SnakeEyes

102

 Index.cshtml
◦ model toegankelijk via Model property van ViewPage

 Intellisense

103

 Index.cshtml
◦ Vervolledig de view en run de app

104

 Toevoegen stylesheet :
◦ Voeg een folder wwwroot toe (conventie). Hierbinnen een

folder css.

 Maak een bestand site.css aan (Rechtsklik css > Add > New Item >
Stylesheet en geef naam site.css in)

105

 Toevoegen stylesheet :
 Open site.css

 Creatie nieuwe CSS rule. Geef onderstaande stijlregels in

 Pas toe in de view Index.cshtml

 Run de app

106

 Toevoegen van een formulier aan View voor Play knop
◦ Hier wordt gebruik gemaakt van tag helpers.

◦ Hiervoor dien je in de View Map een MVC View Imports bestand toe te
voegen: _ViewImports.cshtml. Zo kan je taghelpers gebruiken in elke
view. Voeg volgende toe

aan de Views folder:

◦ Voeg code toe

107

 Toevoegen van een formulier aan View voor Play knop
◦ https://docs.asp.net/en/latest/mvc/views/tag-

helpers/intro.html

https://docs.asp.net/en/latest/mvc/views/tag-helpers/intro.html

 Toevoegen van een formulier
◦ In Index.cshtml voeg je het formulier toe met twee attributen

die verwijzen naar de controller en de action method.
(taghelpers zijn attributen die beginnen met asp-)

◦ Voeg ook een submit knop toe.

 Zelf code ingeven

109

 Afhandelen van submitten van de form
◦ Formulier wordt verstuurd met http post

◦ De actie die request ontvangt : Play in de HomeController

◦ De action method Play in de HomeController

 Moet de business operatie Play aanroepen van SnakeEyes

 Kiest dan de View die gerenderd moet worden (mag hier ook de
Index zijn) en geeft het Model door.

110

 Pas controller aan. Voeg Action method Play toe.

111

 Afhandelen van submitten van de form
◦ Run de applicatie

_snakeEyes bestaat niet meer???

112

 State bijhouden
◦ Reden fout : HTTP is een stateless protocol

 De toestand van een object wordt NIET bijgehouden tussen
opeenvolgende requests. Er wordt telkens een nieuw object
aangemaakt.

 Oplossing : Session variabelen

 Session

 Resource op de server voor 1 gebruiker. Hierin kan je gegevens nodig voor
die gebruiker tijdens 1 sessie (= 1 visit van de gebruiker aan de site)
bijhouden => DUS iedere bezoeker heeft zijn eigen sessie object.

 Die gegevens zijn toegankelijk vanuit alle pagina’s binnen die
webapplicatie en bevatten de info van die specifieke bezoeker

 Hoe weet server nu welk sessie object tot welke bezoeker behoort? Bij
het eerste verzoek van 1 gebruiker, maakt de server 1 sessie object aan
met een uniek gegenereerd userID. De server stuurt een cookie met de
userID naar de browser. Telkens de bezoeker dan een pagina opvraagt
binnen de webapplicatie wordt cookie meegestuurd.

113

 https://docs.asp.net/en/latest/fundamentals/app-
state.html

114

https://docs.asp.net/en/latest/fundamentals/app-state.html

 Configureer de applicatie voor het gebruik van
sessions: voeg in StartUp.cs
◦ in de ConfigureServices

◦ en in de Configure voor app.UseEndpoints , app.UseSession()

115

 State bijhouden door sessie gegevens te lezen en te
schrijven. Aangezien we met objecten werken moet
het object geserializeerd. Dit gebeurt door
serializeren/deserializeren naar json.
◦ .Net Core 3.0 bevat een Sytem.Net.Json namespace, maar dit

bevat voor onze web app nog te weinig mogelijkheden. Het
aanduiden van fields en constructor ontbreekt.

◦ Vandaar maken we gebruik van NewtonSoft.JSON. Hiervoor
dien je een Nuget package te installeren. Rechtsklik op project
> Manage Nuget packages. Browse naar NewtonSoft.Json en
installeer

116

 State bijhouden door sessie gegevens te lezen en te
schrijven.
◦ Sessie gegevens lezen en schrijven

 Schrijven

 Lezen

◦ Het session object wordt vernietigd igv
 Bij time out van de sessie : default 20 min na laatste

117

 We maken Extension methods aan om Session
objecten aan te maken en te lezen.

 Maak map Extensions aan in Project

118

 State bijhouden
◦ De code in de controller wordt

119

 Objecten kunnen niet zo maar geserializeerd worden.
Daarom moeten de fields en properties aangeduid
worden die mogen geserializeerd worden. Dit gebeurt
door [JsonProperty] te plaatsen boven de fields/
members die mogen geserializeerd worden.

 Bovenaan de klasse plaats je
[JsonObject(MemberSerialization.OptIn)]

 Meer informatie:
http://www.newtonsoft.com/json/help/html/Serializat
ionGuide.htm

 Opm. de default is MemberSerialization.OptOut : alle
public members worden dan geserializeerd

120

http://www.newtonsoft.com/json/help/html/SerializationGuide.htm

 Code voor Dice en SnakeEyes

121

 Code voor Dice en SnakeEyes

122

 MVC Flow
◦ Step 1

 Binnenkomende request wordt verstuurd naar Controller. Daar
wordt de bijhorende actie uitgevoerd.

 De controller en actie wordt bepaald door de routing

Request

Controller

123

 MVC Flow : Step 2
◦ Controller verwerkt request, communiceert met Domein en

maakt Model (de gegevens die gerenderd moeten worden.
Kan een ViewBag(ViewData) of domein of ViewModel object
zijn)

Controller
Model

124

 MVC Flow : Step 3
◦ ViewBag en Model wordt doorgegeven aan de View

Controller

View

125

 MVC Flow : Step 4
◦ View transformeert Model naar juiste output formaat

Controller

View

126

 MVC Flow : Step 5
◦ Response is aangemaakt en wordt naar de browser verstuurd

als antwoord op de request

Response

Controller

View

127

 SnakeEyes : Voeg de opmerking “Oeps you did it
again!” toe als 2 * 1 gegooid werd.
◦ Pas klasse SnakeEyes aan. Voorzie property HasSnakeEyes. Pas

methode Play aan zodat deze hier gebruik van maakt.

◦ Pas css aan. Voeg class comment toe

 font-size : x-large; color:red

◦ Pas View aan

128

 SnakeEyes :
◦ Hou de hoogste score bij en geef dit ook weer in de View

129

