HoGent

BEDRIJF
EN
ORGANISATIE

Hoofdstuk 5 : LINQ

HoGent

Hoofdstuk 5 : LINQ

» Inleiding

» LINQ to Objects

o Enkele eenvoudige LINQ methodes
> Where en OrderBy operatoren

o Select operatoren

> Nog meer handige LINQ operatoren

» Expression bodied members
» Oefening
» Appendix

» In dit hoofdstuk worden, naast LINQ, enkele nieuwe C# features
geintroduceerd die heel nauw aansluiten bij LINQ, kijk uit voor

HoGent Pag. 2

LINQ

Inleiding

HoGent

Inleiding

» LINQ: Language Integrated Query

o Querytaal

- SQL-like queries in je C# code
o Compleet geintegreerd

HoGent

* Intellisense, compile time checking van de queries, ...

o

o

o

u]

= Arequest:

= A question:

How much product did we sell ? —_———— -

What is the average invoice amount per
customer?

How many customers bought something /@
this month? B D

Get me the list of all customers that we
invoiced this month along with the
invoice amount

Get me the list of all past due customers

Get me a price list for all current
products

Pag. 4

Inleiding

» Data source

o de data die bevraagd wordt

o heeft een LINQ-provider

o er zijn verschillende providers die toegang geven tot
verschillende soorten data bronnen, bv.
* LINQ to objects (focus in dit hoofdstuk)

* bevragen van in memory data zoals strings, arrays, collections, ...
* LINQ to SQL

* bevragen van data in een relationele databank vanuit je C# code
* LINQ to entities (focus in later hoofdstuk)

- gelijkaardig maar gebruik makend van Entity Framework

HoGent

Pag. 5

Inleiding

HOGent Pag. 6

Inleiding

» Eens je de LINQ syntax beheerst kan je op een
uniforme manier werken met eender welke databron
die een LINQ provider voorziet
o LINQto ...

- Google, Twitter, eBay, Amazon, Fligr...
* XML, JSON, ...

* mySql, Oracle, ...

* Excel, Word, ...

* Javascript, ...

HoGent

Pag. 7

Inleiding

» LINQ syntax
o 2 verschillende soorten

gebruikt in deze cursus

l

QUERY syntax METHOD syntax

var query = from ¢ in customerList

where c.CustomerId == customerld B e e

sulEoE o c.CustomerId == customerId);
e Declaratief, ingebakken in C# e Gebruik makend van methods
* Wordt tijdens compilatie vertaald naar |+ Onderdeel van .NET framework:
method syntax System.Ling namespace in System.Core
 Minder LINQ operatoren beschikbaar assembly

dan bij method syntax

HoGent Pag. 8

Inleiding

» Clone https://github.com/Weblll/05thLing.git

» Wens je de code uit de slides te implementeren:
o Open het View History venster in Team Explorer

o Maak een nieuwe branch aan voor de Commit “Add Starter
Application”

HoGent Pag. 9

https://github.com/WebIII/05thLinq

LINQ

Enkele eenvoudige LINQ methodes
Maak kennis met LINQ method syntax

Cit feature ...

Extension methods en A-expressies. HoGent

LINQ to Objects : Step 1

» Extension methods — Wat?
o dit zijn methodes die toegevoegd worden aan een bestaande
klasse om de functionaliteit uit te breiden
- zonder overerving van de originele klasse
- zonder de originele klasse zelf te wijzigen
* dus zonder hercompilatie van de originele klasse
° in gebruik verschillen ze niet van instance methods

HoGent Pag. 11

LINQ to Objects

» Extension methods — Hoe?

o een extension method declareer je als een static method in
een non generic static class

o de eerste parameter in de parameterlijst laat je voorafgaan
door het keyword this

- het type van deze parameter is het type waarop je de extension
method definieert

HoGent Pag. 12

LINQ to Objects

» Extension methods - Voorbeeld

o Declaratie van een extension method die het type int

uitbreidt: Models/Extension.cs
namespace Extensions
{
public class IntExtension
1
public bDDl IsEven \ i)
{
return 1 % 2 == @;
¥
)
h

> Voorbeeld gebruik:

using Extensions; Stepl.cs
Console.WritelLine("Is & even? {8}", 6.IsEven());
Console.WritelLine("Is 7 even? {8}", 7.IsEven());
for (int 1 = @; 1 < 10; i++)
{

Console.Writeline("{@} is {1}", i, i.IsEven() ? "even" : "odd");
h

Zie Models folder
Extensions.cs en
stepl.cs voor de
voorbeelden.

even? True
even? False

EUEN
odd
BUvEn
odd

5 EVEN

odd
even
odd
EUEN
odd
Pag. 13

LINQ to Objects

» Extension methods - opmerkingen
o een extension method heeft geen toegang tot private
members van de klasse waarop ze is gedefinieerd

o een extension method kan nooit een instance method
‘overriden’

* als een extension method dezelfde naam heeft als een instance
method zal de compiler steeds de instance method kiezen

o extension methods zet je best in een aparte namespace

- je moet die namespace expliciet in een using statement zetten om
de extension methods in scope te brengen

HoGent

Pag. 14

LINQ to Objects

» Extension methods
> Voorbeeld 2:

Model/Extension.cs, class StringExtension

public static string RepeatText(this string s, int aantal)
{
string resultaat = string.Empty;
for (int 1 = @; 1 < aantal; i++)
resultaat += s;
return resultaat;
)i

Stepl.cs

Console.WritelLine("6 times Hello!, that's {@}", "Hello!".RepeatText(6));

string myText = "Please repeat me...";
Console.WriteLine(myText.RepeatText(2));

b times Hello?,. that’s Hello'Hello®Hello®Hellot®Hellot*Hello?

Pleaze repeat me...Please repeat me...

HoGent Pag. 15

LINQ to Objects

» Extension methods

> Voorbeeld 3: | |
Models/Extension.cs, class IntExtension
public static int CalculateSum(this IEnumerable<int> numbers)

1

int aux = @;

foreach (int 1 in numbers)

{
aux += 1;
)i
return aux; Stepl.cs

) IList<int> numbers = new List«gint> { 1, 2, 3, 4, 5 };
Console.WritelLine(numbers.CalculateSum());

4 N

deze extension method op IEnumerable<int> gaan we zelf niet
schrijven, deze en veel meer extension methods op IEnumerable<T>
vormen LINQ to objects...

- /

HoGent Pag. 16

LINQ to Objects

» Extension methods

o QOefening

 Vervolledig de extension method IsDivisibleBy in de klasse
IntExtension in Extension.cs. Deze methode geeft aan of een
geheel getal deelbaar is door een ander geheel getal (wordt als
parameter opgegeven)

* Vervolledig de for loop in Stepl.cs zodat enkel getallen tussen 1
en 20 die deelbaar zijn door 3 worden getoond, maak gebruik van
bovenstaande extension method

HoGent Pag. 17

LINQ

Bevragen van een in-memory data-source

Maak kennis met extension methods gedefinieerd op IEnumerable<T>

Cit feature ...

Extension methods en A-expressies. HoGent

LINQ to Objects

» Bevragen van een in-memory data source
o LINQ methodes zijn extension methods gedefinieerd op
IEnumerable<T>
o Je kan ze gebruiken op elk type dat [Enumerable<T>
implementeert, bv.
* Array

* Generic collections

* List<T>, Queue<T>, Stack<T>, HashSet<T>, LinkedList<T>,
Dictionary<Tkey, Tvalue>, SortedList<Tkey, Tvalue>, ...

o De LINQ extension methods behoren tot de namespace
System.Linq

HoGent Pag. 19

LINQ to Objects

» Bevragen van een in-memory data source

o Enumerable is een static class die alle LINQ extension
methods bevat (this is van het type IEnumerable<T>)

HoGent

Enumerable.

g

@
@
@
@
@
@
@
@

Equals -
Except<:>

First< >

FirstOrDefault«< »

GroupBy< >

Grouploin< >

Intersect< >

Join<=

Last« = -

Pag. 20

LINQ to Objects

» Sum()
o De LINQ extension method Sum() kan gebruikt worden op
een collectie van getallen, ze retourneert de som van alle

getallen in de collectie...
o voorbeeld step2.cs

int[] getallen = new int[] { 2, 8, 10 };
int som =|getallen.Sum()};
// som heeft de waarde 20

getallen.Su

=5 (extension) int [Enumerable<int> . Sumf()
— = 4 /4 k\

[een extension } ‘ retourneert een ’ L

gedefinieerd op

method int
IEnumerable<int>

HoGent Pag. 21

LINQ to Objects

» Sum()

> Voorbeeld: Sum() op enkele andere collecties...
Step2.cs

List<int> getallenlLijst = new List<int> { 2, 8, 10 };
int somLijst = getallenlLijst.Sum();
Console._WriteLine("De som van de getallen in de lijst is {8} ...

LL

, somLijst);

HashSet<double> getallenSet = new HashSet<double> { 2.5, 8.4, 10.6 };
double somSet = getallenSet.Sum();
Console.WritelLine("De som van de getallen in de hashset is {@}

m

, somSet);

Stack<float> getallenStack = new Stack<float>();
getallenStack.Push(1.5F);

getallenStack.Push(2.6F);

float somStack = getallenStack.Sum();

Console._WritelLine("De som van de getallen op de stack is {@} ...

m

, somStack);

De zom van de getallen in de lijst is 28 ...
De som van de getallen in de hashset iz 21.5 ...

De zom van de getallen op de stack i=s 4,1 ...

HoGent Pag. 22

LINQ to Objects

» Nog enkele eenvoudige LINQ methodes:
o Average()
o Count()
o Min()
o Max()

> Voorbeeld

int[] getallen = new int[] { 2, 8, 18 };

Step2.cs

Console.WriteLine("Het gemiddelde is {0:8.80}", getallen.Average());
Console.WriteLine("De collectie bevat {8} getallen", getallen.Count());

Het gemiddelde i= 6.6%
De collectie hevat 3 getallen

o Qefening : vervolledig opgaven in Step2.cs
HoGent

@; (extension] int |[Enumerable<int> .Count<int> () (+ 1 overload)
Returns the number of elements in a sequence.

Pag. 23

LINQ

A-expressies

Anonieme, inline functies ...

HoGent

LINQ to Objects

» A-expressies
o anonieme, inline functies

* maken gebruik van =>, dit is de A-operator
* retourneren een waarde

° in LINQ maken we intensief gebruik van A-expressies

HoGent Pag. 25

LINQ to Objects

Models/Location.cs

» A-expressies
o van gewone functies naar lambda’s...

public class Location

1

¥

public
public
public

public
1

string Country { get; set; }
string City { get; set; }
int Distance { get; set; }

override string ToString()

return City + " in " + Country;

}

public int VoorbeeldFunctieMetMaam(lLocation loc)
|1
" return loc.Distance;

¥

o een CH# functie heeft een type, het type is een Func-delegate
o je kan een functie dus toekennen aan een variabele van het type Func-

delegate

private Func<lLocation, int» mijnFunctie = VoorbeeldFunctieMetNaam;

° via een lambda expressie kan dit alles echter kort en krachtig...

private Func<location, int» mijnlambda = loc =» loc.Distance;

[

voorafgaande declaratie;

v

de functie heeft geen naam, ze is anoniem;

HoGent

de functie wordt in-line (on-the-fly) geschreven, zonder een

de expressie is equivalent met onze oorspronkelijke functie

Pag. 26

LINQ to Objects

» A-expressies
o een lambda expressie is een anonieme functie van het type

Func<pl, p2, .., pn, r> waarbij

° pl, p2, .., pn detypes van de parameters van de anonieme
functie zijn, en

* r het returntype van functie is
- dit steeds het laatste type in de rij <p1, p2, ..., pn, r>

private Func<lLocation, int>» mijnlLambda = loc =» loc.Distance;
X,

et . S

. N B
de functie neemt 1 de functie links van de => operator rgcgts van je => opergtor
parameter.van het retourneert een int vinden we de parameter, vinden we de expressie
type Location het type is impliciet waarvan het resultaat

wordt geretourneerd

bepaald: Location
\\ /

HoGent

Pag. 27

LINQ to Objects

» A-expressie
o structuur wanneer er slechts 1 parameter is:

parameter => expression

o structuur wanneer er meerdere parameters zijn

(parameterl, parameter2, .. , parametern) => expression

HoGent Pag. 28

LINQ to Objects

» A-expressies

° aan methodes kunnen A-expressies als parameter
doorgegeven worden

o deze techniek wordt heel veel gebruikt bij LINQ

o voorbeeld: we willen de som van alle ‘Distance’-s van een
collectie van Locations

HoGent

Models/TravelOrganizer.cs

public class TravelOrganizer

{

// list of places visited and their

public static IEnumerable<location>

{
get

{

return new List<lLocation>{

I

new
new
new
new
new
new
new
new
new
new

new

distance to Seattle

PlacesVisited

Location { City="
Location { City="
Location { City="
Location { City="
Location { City="
Location { City="
Location { City="
Location { City="
Location { City="
Location { City="
Location { City="

London", Distance=4789, Country="UK" },

Amsterdam", Distance=4869, Country="Netherland"

San Francisco", Distance=684, Country="USA" },
Las Vegas", Distance=872, Country="USA" },
Boston", Distance=2488, Country="USA" },
Raleigh", Distance=2363, Country="USA" },
Chicago", Distance=1733, Country="USA" },
Charleston", Distance=2421, Country="USA" },
Helsinki", Distance=4771, Country="Finland" },
Nice", Distance=5428, Country="France" },
Dublin", Distance=4527, Country="Ireland" }

})

Pag. 29

LINQ to Objects

» A-expressies

o voorbeeld vervolg: werking Step3.cs

IEnumerakble<locationy» placesVisited = TravelOrganizer.PlacesVisited:
int sumDistances = placesVisited.Sum(l => l.Distance);

- de IEnumerable<Location> wordt element per element
overlopen: foreach

- elk element is van het type Location

- voor elk Location object wordt de lambda expressie aangeroepen
* de loop variabele is het argument van de lambda expressie

- de lambda expressie retourneert voor elk location-object een int
- 1 => 1l.Distance

- de som van deze int-s is het resultaat van de LINQ expressie en
wordt toegekend aan sumDistances...

HoGent

Pag. 30

LINQ to Objects

» A-expressies

o voorbeeld vervolg, een blik op Intellisense o
ep3.cs

— -

ravelOrganizer.PlacesVisited;

int sumDistances = placesVisited.Sum(l => l.Distance);

[E’; (extension) int [Enumerable<location> . Sum<Location> (Func<Location, int> selector) (+ 9 overloads)]

Computes the sum of the sequence of int values that are cbtained by invoking a transform function on each element of the input sequence,

o Sum<Location>
* is een generische versie van Sum, de type-parameter is Location
* is gedefinieerd op IEnumerable<Location>

- Sum<Location> heeft 1 parameter van het type Func<Location, int>

* we kunnen dus elke functie die 1 Location parameter heeft, en een int
retourneert doorgeven

- lambda expressies laten toe dat we op een heel eenvoudige wijze een
argument voor deze parameter kunnen voorzien

HoGent

LINQ to Objects

» A-expressies
o voorbeeld — vervolg: een blik op msdn uitleg

Computes the sum of the sequence of Int32 values that are obtained
by invoking a transform function on each element of the input

sequence.

o Sum<TSource>

* een generic method Sum, met een type parameter TSource
* het is een extension method gedefinieerd op IEnumerable<TSource>

* deze extension method heeft een parameter van het type
Func<TSource, Int32>

- we kunnen aan deze methode dus een lambda meegeven die een TSource
parameter heeft, en een int retourneert

* via de lambda wordt elk element van TSource getransformeerd naar
een Int32

- de som van deze int-s is het resultaat van Sum<TSource>

HoGent

Pag. 32

LINQ to Objects

» A-expressies
o Voorbeeld2: een overload van Count()

Step3.cs

int[] getallen = new int[] { 2, 8, 18 };
int aantal = getallen.Count(g => g > 5);

5’; (extension) int [Enumerable<int>.Count<int> (Func<int, bool> predicate) (+ 1 overload)
Returns a number that represents how many elements in the specified sequence satisfy a condition.

Console.WritelLine("Er zijn {0} getallen groter dan 5.", aantal);

Er zijn 2 getallen groter dan 5.

HoGent Pag. 33

LINQ to Objects

» A-expressies
> Voorbeeld2: vervolg: blik op Intellisense

@; (extension) int [Enumerable<int>.Count<int>(Func<int, bool> predicate) (+ 1 overload)
Returng a number that represents how many elements in the specified sequence satisfy a condition.

. . . . Dit is een Count<int> heeft 1
Count<int> is Count<int> s generische parameter van het type
een extension gedefinieerd op methode Count Func<int, bool>

method I[Enumerable<int> met type !

parameter int

Count<int>
retourneert
een int

o Qefening :

* bereken het aantal results hoger of gelijk aan 10 (zie Step3.cs)
HoGent pag. 34

LINQ

WHERE & ORDERBY

Ontdek de kracht van LINQ en leer wat deferred execution van een query is...

HoGent

LINQ to Objects

» WHERE, filteren van collecties

Where<TSource=({lEnumerable<TSource=, Func<TSource, Filters a sequence of values based on a predicate.
Boolean =)

- de return waarde is een IEnumerable met enkel die elementen uit
de collectie die voldoen aan het predikaat

- voorbeeld: filteren van een collectie Location objecten
Step3.cs

string[] cities = { "London", "Amsterdam", "San Francisco", "Las Vegas",
"Boston™, "Raleigh", "Chicago", "Charlestown”, "Helsinki", "Nice", "Dublin" };

// steden waarvan de naam langer is dan 5 posities...
TEnumerable<string> citiesWithLongNames = cities.Where(c => c.Length > 5);

foreach (string city in citiesWithLongNames)
Console.Writeline(city);

Las Uegas
Bozton

HoGent Pag. 36

LINQ to Objects

» WHERE
o voorbeeld — werking toeglicht

// steden waarvan de naam langer is dan 5 posities...
TEnumerable<string> citiesWithLongNames = cities.Where(c => c.Length > 5);

- de IEnumerable<string> wordt element per element overlopen:
foreach
- de loop variabele is van het type string
- voor elk element wordt de lambda expressie aangeroepen
* de loop variabele is het argument van de lambda expressie

- alle elementen waarvoor het resultaat van de lambda expressie
true oplevert worden samen in een IEnumerable<string>
geretourneerd

HoGent Pag. 37

LINQ to Objects

» Filteren en sorteren
o WHERE

* het predikaat kan bestaan uit gelijk welke boolse uitdrukking
(gebruik | |, &&, ...)

- werpt een ArgumentNullException wanneer de collectie null is

o voorbeeld 2: Step3.cs

string[] cities = { "London"™, "Amsterdam", "San Francisco", "Las Vegas",

"Boston", "Raleigh", "Chicago"™, "Charlestown", "Helsinki", "Nice", "Dublin™ };

// steden waarvan de naam langer is dan 5 posities en een a bevat...

ITEnumerable<string> citiesFiltered = cities.Where(c => c.lLength > 5 && c.Contains('a'));

foreach (string city in citiesFiltered)
Console.Writeline(city);

HoGent

Pag. 38

LINQ to Objects

» Filteren en sorteren

o WHERE — Deferred Execution
het resultaat van de query wordt berekend wanneer er over
de query variabele wordt geitereerd (foreach), en niet op het
moment dat een waarde wordt toegekend aan de query
variabele!

Step3.cs

declaratie van de
query variabele
citiesWithLongNames

hier is het query
resultaat nodig,
de query wordt
hier pas
uitgevoerd

HoGent

string[] cities = { "London™, "Amsterdam", "San Francisco", "Las Vegas",
"Boston"™, "Raleigh", "Chicago", "Charlestown", "Helsinki", "Nice", "Dublin" };

/steden waarvan de naam langer is dan 5 posities...
[Enumerable<string> citiesWithLongNames = cities.Where(c => c.Length > 5);

cities[@] = "Oostende";

foreach (string city in citiesWithLonghames) S Erancﬁnm
as Uegas

Console.WriteLine(city);

LINQ to Objects

» Filteren en sorteren

o WHERE — Deferred Execution
- telkens de query wordt uitgevoerd kan het resultaat verschillen...
* het resultaat is gebaseerd op de toestand van de databron op het

moment dat de query uitgevoerd wordt... Step3.cs

string[] cities = { "London™, "Amsterdam", "San Francisco", "Las Vegas",
"Boston", "Raleigh", "Chicago", "Charlestown”, "Helsinki", "Nice", "Dublin" };

4 P .] _ ..
declaratie //steden waarvan de naam langer is dan 5 posities...
van de

query

\lYEEEﬁgﬂS,/ cities[@] = "Oostende";

s _ \ | Console.WriteLine("Eerste iteratie...");
uitvoering foreach (string city in citiesWithLongNames)

TEnumerable<string> citiesWithLongNames = cities.Where(c => c.Length > 5);

van de Console.Writeline(city);
query
-
— cities[@] = "Brussel”; Brtosel
uitvoering C:-'ﬁs.ole.wr‘it?Lineu.f"Tw?ede . i’.cer*a’Fie. R %gﬁtﬁigzgiﬂu
van de FGPE?Ch {Etrlng Cle 1n.c1t1e5w1thLongName5) Las Uegas
guery Console.Writeline(city);

\ Y
HoGent

LINQ to Objects

» Deferred vs Immediate Execution

> alle methods die niet expliciet een I[Enumerable<T> (of
|OrderedEnumerable<T>) retourneren volgen immediate execution, i.e.
uitvoering van de query gebeurt op de plaats van declaratie
- Statistische methodes die 1 waarde retourneren
* Sum, Count, Average,...
+ Conversie methodes die de IEnumerable<T> converteren (zie verder)
- Tolist, ToArray, ...

o alle methodes die een IEnumerable<T> (of IOrderedEnumerable<T>)
retourneren volgen deferred execution, i.e. uitvoering gebeurt wanneer
er over effectief over de collectie geitereerd wordt

- ‘standaard’ query methods
* Where, Select, OrderBy, ...

HoGent Pag, 41

LINQ to Objects

» Filteren en sorteren
o ORDERBY (deferred execution)
* OrderBy
OrderByDescending
ThenBy
ThenByDescending

* Reverse
o Voorbeeld

string[] cities = { "London", "Amsterdam", "San Francisco", "Las Vegas",
"Boston™, "Raleigh", "Chicago"”, "Charlestown”, "Helsinki", "Nice", "Dublin" };

Amzterdam
// alle steden gesorteerd op naam Bo=ton
IEnumerable<string> orderedCities = cities.OrderBy(c => c); Eﬂ?g;gg““m
: : 3 + 3 Dublin
foreach (StPlﬂg Cle ln.DPdEPEdC1tIESJ Holainki
Console.WriteLine(city); Las Uegas

HoGent

LINQ to Objects

» Chaining extension methods

o de aanroepen naar verschillende extension methods kan je
aan elkaar rijgen

» Voorbeeld
Step3.cs

string[] cities = { "London", "Amsterdam", "San Francisceo", "Las Vegas",
"Boston™, "Raleigh", "Chicago", "Charlestown”™, "Helsinki", "Nice", "Dublin" };

// steden waarvan de naam langer is dan 5 posities, gesorteerd op naam...

TEnumerable<string> myCities = cities.Where(c => c.lLength > 5).0rderBy(c => ¢);

foreach (string city in myCities)
Console.Writeline(city);

Laz Uegas

London

Raleigh
Francisco

HoGent Pag, 43

LINQ to Objects

» Chaining extension methods
» voorbeeld 2

Step3.cs

string[] cities = { "London", "Amsterdam", "San Francisco", "Las Vegas",
"Boston™, "Raleigh", "Chicago"”, "Charlestown", "Helsinki", "Nice", "Dublin",
"San Anselmo”, "San Diego", "San Mateo", "San Dimas"};

// gefilterde en gesorteerde steden

ITEnumerable<string> orderedCities = cities.
Where(c => c.StartsWith("s")).
OrderByDescending(c => c.Length).
ThenBy(c => c);

foreach (string city in orderedCities)

Console.Writeline(city); Francisco
Anzelmo

Diego
Dimas
Mateo

HoGent pag, 44

LINQ

SELECT

Leer hoe je collecties kunt omvormen tot andere collecties...

Ci#t feature ...

Impliciete typering, anonieme types,
object & collection inializers.

HoGent

LINQ to Objects

» SELECT

Select<TSource, TResult>(IEnumerable<TSource:, Projects each element of a sequence into a new form.

Func<=TSource, TResult>)

* laat je toe elk element van een collectie te transformeren naar
een nieuw type, dit type

+ kan eventueel gelijk zijn aan het originele type
- kan een bestaand type zijn
* kan een anoniem type zijn

HoGent Pag. 46

LINQ to Objects

» SELECT

o voorbeelden
Step4.cs

int[] getallen = new int[] { 2, 8, 18 };

TEnumerable<int> nieuweGetallen = getallen.Select(g => g + 1);
foreach (int 1 in nieuweGetallen)

Console.Writeline(i); 1

Step4.cs

string[] cities = { "London"™, "Amsterdam", "San Francisco", "Las Vegas",

// IEnumerable<string> wordt omgezet naar een IEnumerable<int:>
ITEnumerable<int» citielengths = cities.Select(c => c.Length);

"Boston™, "Raleigh", "Chicago", "Charlestown”, "Helsinki", "Nice", "Dublin" };

HoGent

i

. . . _ ?
foreach (int citylength in citielengths) 13
Console.WritelLine(citylength); E

7
11

o

4

3]

Pag. 47

C# feature Object & Collection

L'NQ tO ObjECtS initializers

» Object Initializers

o |aten je toe waarden toe te kennen aan properties van een object,
tijdens de creatie van het object
+ de betrokken properties moeten publiek toegankelijk zijn

© VoorbeEId public class Location
1
public string Country { get; set; }

public string City { get; set; }
public int Distance { get; set; }

public override string TeString()

i

return City + " in " + Country;

Location mylLocation = new Location myLocation } ;

{ .) i} - City <- Oostende
City = "Oostende", - Country <- Belgium
Country = "Belgium" - Distance <-0

s

er wordt een instantie van type Location gemaakt a.d.h.v. de default)
constructor, tijdens creatie krijgen de properties City en Country

L expliciet een waarde toegekend)

HoGent pag. 48

LINQ to Objects S ianers

» Collection initializers
° |laten je toe op een eenvoudige manier collecties te
instantiéren en te seeden
- werkt op een klasse die IEnumerable implementeert,
- of een klasse die een Add-extension method voorziet

* je kan de collectie seeden door gebruik te maken van simpele
waarden, expressies of object initializers...

o voorbeeld

IList<int> digits = new List<int> { @, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; ‘ Collection initializer ‘

IList<lLocation> mylLocations = new List<location> {
"Oostende”, Country = "Belgium"}, E Collection initializer, in

new Location { City
new Location { City

"Amsterdam", Country = "Netherlands"}, combinatie met object
initializer

new Location { City = "Berlin", Country = "Germany"}

h

HoGent pag. 49

LINQ to Objects

» SELECT

o VVoorbeeld: omzetten van een collectie van Location objecten naar
lijst van strings...

public class Leocation
1
1
return City +
¥
¥

in

public override string ToString()

+ Country;

public string Country { get; set; 7
public string City { get; set; }
public int Distance { get; set; 7

public class CityDistance

1
public string Country { get; set; }
public string Name { get; set; }
public int DistanceInKm { get; set; }
public override string ToString()
{

return Name + " in " + Country;

¥

¥

Ho(

public class TrawvelOrganizer

1

S/ list of places wvisited and their distance to Seattle
public static IlList<locaticon> PlacesVisited

1
get

1

return new List<location>{

new
new
new
new
new
new
new

Location
Location
Location
Location
Location
Location
Location

o e e e ey

City="London", Distance=4789, Country="UK" },
City="Amsterdam”, Distance=4869, Country="Netherland" I,
City="5San Francisco", Distance=884, Country="USA" },
City="Las Vegas", Distance=872, Country="USA" },
City="Boston", Distance=2488, Country="USA" },
City="Raleigh", Distance=2363, Country="USA" },
City="Chicago", Distance=1733, Country="USA" },

Pag. 50

LINQ to Objects

» SELECT
° Voorbeeld vervolg Stepd.cs

TEnumerable<location> placesVisited = TravelOrganizer.PlacesVisited;
IEnumerable<string> cityNames = placesVisited.Select(c =» c.City);
foreach (string city in cityNames)

Cungule.whiteLine[city}ﬂ

o werking
* de IEnumerable<Location> wordt overlopen: foreach
- voor elk Location object wordt de lambda expressie aangeroepen
het Location object is telkens het argument van de lambda expressie
- de lambda expressie retourneert telkens de city property
* al deze objecten worden als IEnumerable<string> geretourneerd

o Qefening : print de namen van de steden in de USA,
gesorteerd op naam

HoGent Pag. 51

LINQ to Objects

» SELECT

> Voorbeeld: omzetten van een collectie van Location objecten
naar een collectie van CityDistance objecten...

Step4.cs

IEnumerable<location> placesVisited = TravelOrganizer.PlacesVisited;
IEnumerable<CityDistance> cityDistances = placesVisited.Select(
1 =» new CityDistance

1

Name = 1.City,
Country = l.Country,
DistanceInKm = (int)(l.Distance * 1.61)

s
foreach (CityDistance ¢ in cityDistances)
Consocle.WriteLine(c);

o werking
* de IEnumerable<Location> wordt overlopen: foreach
- voor elk Location object wordt de lambda expressie aangeroepen
* het Location object is telkens het argument van de lambda expressie
+ de lambda expressie retourneert telkens een nieuw CityDistance object
HoGent:® 2l deze objecten worden als IEnumerable<CityDistance> geretourneerd

Pag. 52

LINQ to Objects

» VAR

o voor variabelen gedeclareerd op method niveau (lokale variabelen) kan
je als type var gebruiken

o hiermee introduceer je een impliciet getypeerde variabele

o dit is nog steeds een sterk getypeerde variabele, maar de compiler
bepaalt zelf het type

- je moet een impliciet getypeerde variabele initialiseren bij declaratie
- merk op: Javascript var verschilt van deze C# var

var num = 58;
var str = "simple string";
var obj = new MyType();

var numbers = new int[] { 1, 2, 3 };
var dic = new Dictionary<int, MyType>();

int num = 58;
string str = "simple string";
| MyType obj = new MyType();

compiler genereert

selfde code int[] numbers = new int[] { 1, 2, 3 };

Dictionary<int, MyType> dic = new Dictionary<int, MyType>();

HoGent Pag. 53

LINQ to Objects

» SELECT (met gebruik van var)

o voorbeeld
Step4.cs

—r

TEnumerable<location® placesVisited = TravelOrganizer.PlacesVisited;
J/IEnumerable<location> wordt omgezet naar een type door de compiler bepaald...

var citylist = placesVisited.Select(c => c.City);

] {local variable) IEnumerable<string: cityList

foreach (var city in citylist)

Conscle.Wr

[*INlocal variable) string city

Via Intellisense kan je zien dat de compiler deze var vertaalt naar
string of IEnumerable<string>, city en cityList zijn sterk getypeerd...

HoGent

Pag. 54

LINQ to Objects

» Anonieme types

o een anoniem type is een type die niet is benoemd, je introduceert het
on-the-fly

* het is een type zonder klassedefinitie

* je maakt een nieuw object aan van het anonieme type door gebruik te
maken van new, zonder type-specificatie

* het type is bepaald door een opsomming van properties
* deze properties zijn read-only

var homeTown = new

homeTown is een variabele die
{ impliciet getypeerd is (var)

Name = "Qostende",
NrOfInhabitants = 6eeee
}s
- : var homeTown = new
homeTown wordt geinstantieerd zonder een
klassedefinitie, het type van homeTown heeft geen naam, { #@ (local variable) ‘2 homeTown
het type is anoniem, Name
het type is volledig bepaald door de twee props name en Anonymous Types:
nrOflnhabitants, NrQ- ‘zisnew{ string Mame, int NrOfinhabitants }
homeTown is sterk getypeerd... };
L]

HoGent

Pag. 55

LINQ to Objects

» SELECT — Anonymous types

o in LINQ worden anonieme types dikwijls gebruikt om een collectie van
objecten te transformeren naar een collectie van objecten die elk een
subset van de properties van de originele objecten bevatten

o Voorbeeld omzetten van een collectie van Location objecten naar een
collectie van anonieme objecten...

public class Locaticon
1
public string Country { get; set; }
public string City { get; set; }
public int Distance { get; set; }
public override string ToStrine()
{ public class TravelOrganizer
return City + " 1 1
} // list of places visited and their distance to Seattle
} public static Ilist<location> PlacesVisited
1
get
1
return new List<locatiocns{

new Location { City="London", Distance=4789, Country="UK" },

new Location { City="Amsterdam", Distance=4869, Country="Netherland"
new Location { City="San Francisco", Distance=684, Country="USA" },
HOGent new Location { City="Las Vegas", Distance=872, Country="USA" },

new Location { City="Boston", Distance=2488, Country="USA" },

R —— [P L D S L SR | T L | [o T . o T s | o S | N gl AL LI

LINQ to Objects

» SELECT — Anonymous types
> Voorbeeld vervolg

Step4.cs
IEnumerable<lLocation> placesVisited = TravelOrganizer.PlacesVisited; de anoniem getypeerde
var anonymousCities = placesVisited.Select(c =»> new objecten bevatten de naam
{ van de stad en de afstand

tot Seattle maar nu

Name = c.City, omgezet naar km

DistanceInkm = c.Distance * 1.81

1s

public class Locaticon
1
public string Country { get; set; }
public string City { get; set; } new
public int Distance { get; set; } 1
| > Name = 1.City,
public override string ToString() DistanceInKm = l.Distance * 1.61
{ }
return City + " in " + Country;
¥
¥

HoGent Pag. 57

LINQ

Nog meer LINQ operatoren

Nog een selectie aan handige operatoren...

HoGent

LINQ to Objects

» Nog meer handige LINQ methods
First()

* retourneert het eerste element uit de collectie

o]

* InvalidOperationException als collectie leeg is
- ArgumentNullException als collectie null is

FirstOrDefault()

* retourneert het eerste element uit de collectie

(0]

* retourneert de default waarde als de collectie leeg is
- dit is null voor nullable en reference types

- ArgumentNullException als collectie null is

Interessante overloads

* First(predicate) / FirstOrDefault(predicate)

Last() / LastOrDefault()

- volledig analoog

o

o

HoGent

Pag. 59

LINQ to Objects

» Nog meer handige LINQ methods
> voorbeeld

int[] getallen = new int[] { 2, 8, 10 };

// x krijgt de waarde 2

int x = getallen.FirstOrDefault();

// y krijgt de waarde 8

int y = getallen.FirstOrDefault(g => g > 2);
// z krijgt de waarde @

int z = getallen.FirstOrDefault(g => g < 2);
// 1 krijgt de waarde 2

int i = getallen.First();

//] krijgt de waarde 8

int j = getallen.First(g => g > 2);

// er wordt een InvalidOperationException geworpen...
int t = getallen.First(g => g < 2);

HoGent Pag. 60

LINQ to Objects

» Nog meer handige LINQ methods
Skip()

- slaat alle elementen uit de collectie over, tot een bepaalde positie, en
retourneert dan de rest van de elementen

Take()

- retourneert alle elementen van het begin van de collectie tot op een
bepaalde positie in de collectie

SkipWhile/TakeWhile

* analoog maar nu worden elementen overgeslaan/genomen tot we aan een
element komen die aan een bepaald predikaat voldoet

o]

(0]

(0]

(0]

Deze methodes retourneren IEnumerable types en volgen dus
deferred execution

HoGent Pag. 61

LINQ to Objects

» Nog meer handige LINQ methods
> voorbeeld Skip/Take

// Retourneert een subset van de getallen (1-based)
public static IEnumerable<int> GeefGetallen(IEnumerable<int> getallen, int van, int totEnMet)
{
return getallen.Skip(van - 1).Take(totEnMet - van + 1);
h

int[] getallen = new int[] { 2, 4, 6, 8, 10 ,12 };
// neem derde tot en met vijfde element uit de collectie
TEnumerable<int> subset = GeefGetallen(getallen, 3, 5);

4 @ subset| [Systern.Ling.Enumerable. < Takelterator=d__ 1<int>} =

b @ Mon-Public members

4 1 Results View Expanding the Results View will enumerate the I[Enumerable
@ [0]|6
@ [1]| 8
@ [2]] 10

HoGent

Pag. 62

LINQ to Objects

» Nog meer handige LINQ methods
o SelectMany()

- vormt elk element van een collectie om tot een I[Enumerable,

* en plakt al deze I[Enumerables samen tot 1 IEnumerable (“flattening the

result”)
Step5.cs

TList{location> mylocations = new List<location> {
new Location { City = "Oostende", Country = "Belgium"},
new Location { City = "Amsterdam", Country = "Netherlands"},

new Location { City = "Berlin", Country = "Germany™}
¥5
var alles = mylocations.SelectMany(l => new List<string> { 1.City, 1l.Country });

E‘.;, (extension) IEnumerable<string> |[Enumerable<Location> SelectMany<Location, string> (Func<Location, IEnumerable<string>> selector) (+ 3 overloads)
Projects each elerment of a sequence to an [Enumerable<out T> and flattens the resulting sequences into one sequence.

foreach (var s in alles)
Console.WriteLine("- {8} -", s); Oostende —

Belgium —

Amsterdam —
Metherlands -
Berlin -
Germany —

HoGent Pag. 63

LINQ to Objects

» Nog meer handige LINQ methods
o GroupBy()

- laat je toe elementen uit een collectie te groeperen

* het resultaat is een IEnumerable van IGrouping

- elke IGrouping bevat een Key en een collectie van bijhorende objecten
Step5.cs

IList{lLocation» mylLocations = new List<lLocation> {

i

var overzicht = mylocations.GroupBy(l =»> 1.Country, 1 => 1.City);

new Location { City = "Oostende", Country = "Belgium"},

new Location { City = "Amsterdam", Country = "Netherlands"},
new Location { City = "Gent", Country = "Belgium"7},

new Location { City = "Amersfoort", Country = "Netherlands"},
new Location { City = "Barcelona", Country = "Spain"}

foreach (var overzichtsGroep in overzicht)

{

Console.WritelLine(overzichtsGroep.Key);
foreach (string city in overzichtsGroep)
Console.WritelLine(" - {@8}", city);

Be lgium
— Do=stende
- Gent
Metherlands

— Amzterdam
— Amersfoort

HoGent

ain
— Barcelona

Pag. 64

LINQ to Objects

» Nog meer handige LINQ methods
o Tolist(), ToArray(), ToDictionary(), ...

- vormt een [Enumerable om tot een lijst/array/dictionary/...

- deze conversie zorgt voor immediate execution van de query

IList<lLocation> mylocations = new List<location> {
"Oostende", Country = "Belgium"},
"Mmsterdam", Country = "Netherlands"},

new Location { City
new Location { City

"Gent", Country = "Belgium"},
"Mmersfoort”, Country = "Netherlands"},

new Location { City
new Location { City

I

var locsInBelgium = mylLocations.Where(l =» 1.Country == "Belgium").TolList();
myLocations.Add(new Location { City = "Brugge", Country = "Belgium" });

Console.Writeline("Cities in Belgium:");
foreach (var 1 in locsInBelgium)
1

Console.WriteLine(" - {@}", 1.City);

} Citieszs in Belgium:
— Dostende

de query wordt hier direct
uitgevoerd want we
gebruiken .TolList()

zonder .Tolist() zou Brugge
wel deel van de uitvoer zijn...

- Gent

HoGent

Pag. 65

LINQ to Objects

» Nog meer handige LINQ methods

o All()

All<TSource>

Determines whether all elements of a sequence satisfy a condition.

° Any()

Any<TSource>(lEnumerable<TSource >)

Any<TSource>(lEnumerable<TSource >, Func<TSource, Boolean>)

Determines whether a sequence contains any elements.

Determines whether any element of a sequence satisfies a condition.

o Distinct()

Distinct < TSource>({I[Enumerable < TSource =)

Distinct<TSource=(I[Enumerable<TSource =,
IEqualityComparer<TSource>)

Returns distinct elements from a sequence by using the default
equality comparer to compare values,

Feturns distinct elements from a sequence by using a specified
I[EqualityComparer<T:> to compare values.

o Contains(), ElementAt(), en

20 veel meer...

| zie |

https://msdn.microsoft.com/en-

us/library/vstudio/system.linqg.enumerable methods(v=vs.100).aspx

https://msdn.microsoft.com/en-us/library/vstudio/system.linq.enumerable_methods(v=vs.100).aspx

LINQ

Expression bodied members

HoGent

Expression-Bodied Function Members

» Ook in properties en methodes kan je gebruik maken

van =>

HoGent

Stepb.cs

public class Person

{

arivate string lname;

public Person(string firstName, string lastName)

{

FName = firstName;
LName = lastName;

}

public string LName

get == Iname;
set => lname = value;

}

public String FName { get; set; }

public String FullName => 5"{FName} {LName}"; <
public override string ToString() => 5"{FName} {LName}" Trim(};

public void DhSplaerame[} => Console WriteLine(ToString());

Getter only property

Pag. 68

LINQ

Oefening

HoGent

Oefening

» Oefening :
Zie Step7.cs

————————————— LING Menu--------------

1. Step 1: Extension methods.

2. Step 2: Enkele eenvoudige Ling operatoren.
3. Step 3: Where en lambda expressies

4. Step 4: Select en var/anonieme types

5. Step 5: Nog meer handige LINQ operatoren
6. Step 6: Expression bodied members

7. Oefeningen

00, Exit.

Enter your choice

HoGent

Istep 7

Exercises

Gemiddelde afstand van de steden is 3177 miles

De verste stad ligt op 5428 miles

De verste stad in de USA is Boston in USA at 2488 miles distance

————— Dichte steden buiten de USA -----
Ireland

————— Alle landen in de lijst: -----
Finland

France

Ireland

Netherland

LK

LSA

Welke steden liggen in de USA?

————— Anonieme type voor landen: -----

{ City = London, InUSA = False }

{ City = Amsterdam, InUSA = False }
{ City = San Francisco, InUSA = True }
{ City = Las Vegas, InUSA = True }
{ City = Boston, InUSA = True }

{ City = Raleigh, InUSA = True }

{ City = Chicago, InUSA = True }

{ City = Charleston, InUSA = True }
{ City = Helsinki, InUSA = False }
{ City = Nice, InUSA = False }

{ City = Dublin, InUSA = False }

————— CityDistances voor steden in USA:

Las Vegas in USA at 1395 km distance
Boston in USA at 3986 km distance
Raleigh in USA at 3788 km distance
Chicago in USA at 2772 km distance

Charleston in USA at 3873 km distance

San Francisco in USA at 1894 km distance

Appendix

- de ForEach() method
- reflection in C#

HoGent

Appendix : ForEach() method

» Op List<T> is de methode ForEach() gedefinieerd

% | ForEachl{Action<T=) Performs the specified action on each element of the List<T=.

Action<T> is een anonieme functie met T als parameter en

» Voorbeeld: die void retourneert.

IEnumerable<location?> placesVisited = TravelOrganizer.PlacesVisited;

List<location> allPlaces = m&esvimﬂ.ToLizt{}ﬂ

S,

allPlaces.ForEach(ap =» Console.Writeline(ap));
. 4

L e Y AT T T L

London in UK at 4789 miles distance

Amsterdam in Metherland at 4869 miles distance
San Francisco in USA at 684 miles distance

Laz Uegas in USA at 872 miles distance

Boston in USA at 2488 miles distance

Raleigh in USA at 2363 miles distance
Chicago in USA at 1733 miles distance

de lambda expression bevat een Charleston in USA at 2421 miles distance
Helsinki in Finland at 4771 miles distance
anonieme functie d|e VOid Mice in France at 5428 miles distance

Dublin in Ireland at 4527 miles distance

retourneert... en is van het type
Action<T>

HoGent Pag. 72

Appendix : Reflection

» Reflection

(.:'/ ol J .
o d
£ *‘ W 6—\\
e Q ‘A
o /.,/)
N ol

In object oriented programing languages such as Java, reflection allows inspection of classes, interfaces, fields and
methods at runtime without knowing the names of the interfaces, fields, methods at compile time. It also allows
instantiation of new objects and invocation of methods.

Reflection can also be used to adapt a given program to different situations dynamically. For example, consider an
application that uses two different classes ¥ and v interchangeably to perform similar operations. Without reflection-
oriented programming, the application might be hard-coded to call method names of class X and class v. However,

using the reflection-oriented programming paradigm, the application could be designed and written to utilize reflection
in order to invoke methods in classes x and ¥ without hard-coding method names. Reflection-oriented programming

o EF en andere ORM tools maken daar gebruik van

HoGent Pag. 73

Appendix : Reflection

» Voorbeeld : Main methode in Program.cs

if (keuze I="99")
{
Type type = Type.GetType("Ling.Step” + keuze);
if (type !=null)
{
Object o = Activator.Createlnstance(type);
type.GetMethod("Execute").Invoke(o, null);
}
}

HoGent

Type discovery : reflection zoekt een
klasse in de assembly met de naam
Ling.Stepl.

Creéert een instantie van die klasse

Voert de methode Execute van dit
object uit (null : daar deze methode
geen parameters vereist)

Pag. 74

Referenties

» ScottGu’s Blog - Using LINQ with ASP.NET (Part 1). (n.d.).
Retrieved August 07, 2014, from
http://weblogs.asp.net/scottgu/Using-LINQ-with-ASP.NET-

2800 Part-1 2900

» LINQ (Language-Integrated Query). (n.d.). Retrieved August 07,
2014, from http://msdn.microsoft.com/en-
us/library/bb397926.aspx

» Uitgebreide lijst met LINQ voorbeelden op
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b

» Pluralsight:
o LINQ Fundamentals with C# 6.0 by Scott Allen
o Practical LINQ by Deborah Kurata
» Microsoft Virtual Academy :
o Demystifying Ling : https://mva.microsoft.com/en-US/training-
courses/demystifying-ling-12301?1=949lp9SKB 8804668937#
» LingPad: playground om Ling queries uit te proberen
https://www.lingpad.net/

HOGEI"It Pag. 75

http://weblogs.asp.net/scottgu/Using-LINQ-with-ASP.NET-_2800_Part-1_2900_
http://msdn.microsoft.com/en-us/library/bb397926.aspx
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://mva.microsoft.com/en-US/training-courses/demystifying-linq-12301?l=94qIp9SKB_8804668937
https://www.linqpad.net/

