
Pag. 1

 Inleiding

 LINQ to Objects
◦ Enkele eenvoudige LINQ methodes

◦ Where en OrderBy operatoren

◦ Select operatoren

◦ Nog meer handige LINQ operatoren

 Expression bodied members

 Oefening

 Appendix

Pag. 2

 In dit hoofdstuk worden, naast LINQ, enkele nieuwe C# features
geïntroduceerd die heel nauw aansluiten bij LINQ, kijk uit voor

C# feature …

Inleiding

 LINQ: Language Integrated Query
◦ Querytaal

 SQL-like queries in je C# code

◦ Compleet geïntegreerd
 Intellisense, compile time checking van de queries, …

Pag. 4

 Data source
◦ de data die bevraagd wordt

◦ heeft een LINQ-provider

◦ er zijn verschillende providers die toegang geven tot
verschillende soorten data bronnen, bv.

 LINQ to objects (focus in dit hoofdstuk)

 bevragen van in memory data zoals strings, arrays, collections, …

 LINQ to SQL

 bevragen van data in een relationele databank vanuit je C# code

 LINQ to entities (focus in later hoofdstuk)

 gelijkaardig maar gebruik makend van Entity Framework

Pag. 5

Pag. 6

 Eens je de LINQ syntax beheerst kan je op een
uniforme manier werken met eender welke databron
die een LINQ provider voorziet
◦ LINQ to …

 Google, Twitter, eBay, Amazon, Fliqr…

 XML, JSON, …

 mySql, Oracle, …

 Excel, Word, …

 Javascript, …

 …

Pag. 7

 LINQ syntax
◦ 2 verschillende soorten

Pag. 8

QUERY syntax METHOD syntax

• Declaratief, ingebakken in C#
• Wordt tijdens compilatie vertaald naar

method syntax
• Minder LINQ operatoren beschikbaar

dan bij method syntax

• Gebruik makend van methods
• Onderdeel van .NET framework:

System.Linq namespace in System.Core
assembly

gebruikt in deze cursus

 Clone https://github.com/WebIII/05thLinq.git

 Wens je de code uit de slides te implementeren:
◦ Open het View History venster in Team Explorer

◦ Maak een nieuwe branch aan voor de Commit “Add Starter
Application”

Pag. 9

https://github.com/WebIII/05thLinq

Enkele eenvoudige LINQ methodes
Maak kennis met LINQ method syntax

Extension methods en λ-expressies.

C# feature …

 Extension methods – Wat?
◦ dit zijn methodes die toegevoegd worden aan een bestaande

klasse om de functionaliteit uit te breiden

 zonder overerving van de originele klasse

 zonder de originele klasse zelf te wijzigen

 dus zonder hercompilatie van de originele klasse

◦ in gebruik verschillen ze niet van instance methods

Pag. 11

C# feature Extension Methods

 Extension methods – Hoe?
◦ een extension method declareer je als een static method in

een non generic static class

◦ de eerste parameter in de parameterlijst laat je voorafgaan
door het keyword this

 het type van deze parameter is het type waarop je de extension
method definieert

Pag. 12

 Extension methods - Voorbeeld
◦ Declaratie van een extension method die het type int

uitbreidt:

◦ Voorbeeld gebruik:

Pag. 13

Step1.cs

Models/Extension.cs

Zie Models folder
Extensions.cs en
step1.cs voor de
voorbeelden.

 Extension methods - opmerkingen
◦ een extension method heeft geen toegang tot private

members van de klasse waarop ze is gedefinieerd

◦ een extension method kan nooit een instance method
‘overriden’

 als een extension method dezelfde naam heeft als een instance
method zal de compiler steeds de instance method kiezen

◦ extension methods zet je best in een aparte namespace

 je moet die namespace expliciet in een using statement zetten om
de extension methods in scope te brengen

Pag. 14

 Extension methods
◦ Voorbeeld 2:

Pag. 15

Step1.cs

Model/Extension.cs, class StringExtension

 Extension methods
◦ Voorbeeld 3:

Pag. 16

deze extension method op IEnumerable<int> gaan we zelf niet
schrijven, deze en veel meer extension methods op IEnumerable<T>

vormen LINQ to objects…

Step1.cs

Models/Extension.cs, class IntExtension

 Extension methods
◦ Oefening

 Vervolledig de extension method IsDivisibleBy in de klasse
IntExtension in Extension.cs. Deze methode geeft aan of een
geheel getal deelbaar is door een ander geheel getal (wordt als
parameter opgegeven)

 Vervolledig de for loop in Step1.cs zodat enkel getallen tussen 1
en 20 die deelbaar zijn door 3 worden getoond, maak gebruik van
bovenstaande extension method

Pag. 17

Bevragen van een in-memory data-sourceer data source
data source
Maak kennis met extension methods gedefinieerd op IEnumerable<T>

Extension methods en λ-expressies.

C# feature …

 Bevragen van een in-memory data source
◦ LINQ methodes zijn extension methods gedefinieerd op

IEnumerable<T>

◦ Je kan ze gebruiken op elk type dat IEnumerable<T>
implementeert, bv.

 Array

 Generic collections

 List<T>, Queue<T>, Stack<T>, HashSet<T>, LinkedList<T>,
Dictionary<Tkey, Tvalue>, SortedList<Tkey, Tvalue>, …

◦ De LINQ extension methods behoren tot de namespace
System.Linq

Pag. 19

 Bevragen van een in-memory data source
◦ Enumerable is een static class die alle LINQ extension

methods bevat (this is van het type IEnumerable<T>)

Pag. 20

 Sum()
◦ De LINQ extension method Sum() kan gebruikt worden op

een collectie van getallen, ze retourneert de som van alle
getallen in de collectie...

◦ voorbeeld

Pag. 21

een extension
method

retourneert een
int gedefinieerd op

IEnumerable<int>

Step2.cs

 Sum()
◦ Voorbeeld: Sum() op enkele andere collecties…

Pag. 22

Step2.cs

 Nog enkele eenvoudige LINQ methodes:

◦ Average()

◦ Count()

◦ Min()

◦ Max()

◦ Voorbeeld

◦ Oefening : vervolledig opgaven in Step2.cs
Pag. 23

Step2.cs

λ-expressies
Anonieme, inline functies …

 λ-expressies
◦ anonieme, inline functies

 maken gebruik van =>, dit is de λ-operator

 retourneren een waarde

◦ in LINQ maken we intensief gebruik van λ-expressies

Pag. 25

C# feature λ-expressies

 λ-expressies
◦ van gewone functies naar lambda’s…

◦ een C# functie heeft een type, het type is een Func-delegate
◦ je kan een functie dus toekennen aan een variabele van het type Func-

delegate

◦ via een lambda expressie kan dit alles echter kort en krachtig…

Pag. 26

de functie wordt in-line (on-the-fly) geschreven, zonder een
voorafgaande declaratie;
de functie heeft geen naam, ze is anoniem;
de expressie is equivalent met onze oorspronkelijke functie

Models/Location.cs

 λ-expressies
◦ een lambda expressie is een anonieme functie van het type
Func<p1, p2, …, pn, r> waarbij

 p1, p2, …, pn de types van de parameters van de anonieme
functie zijn, en

 r het returntype van functie is

 dit steeds het laatste type in de rij <p1, p2, …, pn, r>

Pag. 27

de functie neemt 1
parameter van het
type Location

de functie
retourneert een int

links van de => operator
vinden we de parameter,
het type is impliciet
bepaald: Location

rechts van de => operator
vinden we de expressie
waarvan het resultaat
wordt geretourneerd

 λ-expressie
◦ structuur wanneer er slechts 1 parameter is:

◦ structuur wanneer er meerdere parameters zijn

Pag. 28

(parameter1, parameter2, … , parametern) => expression

parameter => expression

 λ-expressies
◦ aan methodes kunnen λ-expressies als parameter

doorgegeven worden

◦ deze techniek wordt heel veel gebruikt bij LINQ

◦ voorbeeld: we willen de som van alle ‘Distance’-s van een
collectie van Locations

Pag. 29

Models/TravelOrganizer.cs

 λ-expressies
◦ voorbeeld vervolg: werking

 de IEnumerable<Location> wordt element per element
overlopen: foreach

 elk element is van het type Location

 voor elk Location object wordt de lambda expressie aangeroepen

 de loop variabele is het argument van de lambda expressie

 de lambda expressie retourneert voor elk location-object een int

 l => l.Distance

 de som van deze int-s is het resultaat van de LINQ expressie en
wordt toegekend aan sumDistances...

Pag. 30

Step3.cs

 λ-expressies
◦ voorbeeld vervolg, een blik op Intellisense

◦ Sum<Location>

 is een generische versie van Sum, de type-parameter is Location

 is gedefinieerd op IEnumerable<Location>

 Sum<Location> heeft 1 parameter van het type Func<Location, int>

 we kunnen dus elke functie die 1 Location parameter heeft, en een int
retourneert doorgeven

 lambda expressies laten toe dat we op een heel eenvoudige wijze een
argument voor deze parameter kunnen voorzien

Step3.cs

 λ-expressies
◦ voorbeeld – vervolg: een blik op msdn uitleg

◦ Sum<TSource>
 een generic method Sum, met een type parameter TSource

 het is een extension method gedefinieerd op IEnumerable<TSource>

 deze extension method heeft een parameter van het type
Func<TSource, Int32>

 we kunnen aan deze methode dus een lambda meegeven die een TSource
parameter heeft, en een int retourneert

 via de lambda wordt elk element van TSource getransformeerd naar
een Int32

 de som van deze int-s is het resultaat van Sum<TSource>

Pag. 32

 λ-expressies
◦ Voorbeeld2: een overload van Count()

Pag. 33

Step3.cs

 λ-expressies
◦ Voorbeeld2: vervolg: blik op Intellisense

◦ Oefening :

 bereken het aantal results hoger of gelijk aan 10 (zie Step3.cs)
Pag. 34

Count<int> is
een extension

method

Count<int>
retourneert

een int

Count<int> is
gedefinieerd op

IEnumerable<int>

Count<int> heeft 1
parameter van het type
Func<int, bool>

Dit is een
generische

methode Count,
met type

parameter int

WHERE & ORDERBY
Ontdek de kracht van LINQ en leer wat deferred execution van een query is…

 WHERE, filteren van collecties

 de return waarde is een IEnumerable met enkel die elementen uit
de collectie die voldoen aan het predikaat

 voorbeeld: filteren van een collectie Location objecten

Pag. 36

Step3.cs

 WHERE
◦ voorbeeld – werking toeglicht

 de IEnumerable<string> wordt element per element overlopen:
foreach

 de loop variabele is van het type string

 voor elk element wordt de lambda expressie aangeroepen

 de loop variabele is het argument van de lambda expressie

 alle elementen waarvoor het resultaat van de lambda expressie
true oplevert worden samen in een IEnumerable<string>
geretourneerd

Pag. 37

 Filteren en sorteren
◦ WHERE

 het predikaat kan bestaan uit gelijk welke boolse uitdrukking
(gebruik ||, &&, …)

 werpt een ArgumentNullException wanneer de collectie null is

◦ voorbeeld 2:

Pag. 38

Step3.cs

 Filteren en sorteren
◦ WHERE – Deferred Execution

het resultaat van de query wordt berekend wanneer er over
de query variabele wordt geïtereerd (foreach), en niet op het
moment dat een waarde wordt toegekend aan de query
variabele!

Pag. 39

declaratie van de
query variabele

citiesWithLongNames

hier is het query
resultaat nodig,
de query wordt

hier pas
uitgevoerd

Step3.cs

 Filteren en sorteren
◦ WHERE – Deferred Execution

 telkens de query wordt uitgevoerd kan het resultaat verschillen…

 het resultaat is gebaseerd op de toestand van de databron op het
moment dat de query uitgevoerd wordt…

Pag. 40

declaratie
van de
query

variabele

uitvoering
van de
query

uitvoering
van de
query

Step3.cs

 Deferred vs Immediate Execution
◦ alle methods die niet expliciet een IEnumerable<T> (of

IOrderedEnumerable<T>) retourneren volgen immediate execution, i.e.
uitvoering van de query gebeurt op de plaats van declaratie

 Statistische methodes die 1 waarde retourneren

 Sum, Count, Average ,…

 Conversie methodes die de IEnumerable<T> converteren (zie verder)

 ToList, ToArray, …

◦ alle methodes die een IEnumerable<T> (of IOrderedEnumerable<T>)
retourneren volgen deferred execution, i.e. uitvoering gebeurt wanneer
er over effectief over de collectie geïtereerd wordt

 ‘standaard’ query methods

 Where, Select, OrderBy, …

Pag. 41

 Filteren en sorteren
◦ ORDERBY (deferred execution)

 OrderBy

 OrderByDescending

 ThenBy

 ThenByDescending

 Reverse

◦ Voorbeeld

Pag. 42

 Chaining extension methods
◦ de aanroepen naar verschillende extension methods kan je

aan elkaar rijgen

 Voorbeeld

Pag. 43

Step3.cs

 Chaining extension methods

 voorbeeld 2

Pag. 44

Step3.cs

SELECT
Leer hoe je collecties kunt omvormen tot andere collecties…

Impliciete typering, anonieme types,
object & collection inializers.

C# feature …

 SELECT

 laat je toe elk element van een collectie te transformeren naar
een nieuw type, dit type

 kan eventueel gelijk zijn aan het originele type

 kan een bestaand type zijn

 kan een anoniem type zijn

Pag. 46

 SELECT
◦ voorbeelden

Pag. 47

Step4.cs

Step4.cs

 Object Initializers
◦ laten je toe waarden toe te kennen aan properties van een object,

tijdens de creatie van het object

 de betrokken properties moeten publiek toegankelijk zijn

◦ voorbeeld

Pag. 48

C# feature Object & Collection
initializers

er wordt een instantie van type Location gemaakt a.d.h.v. de default
constructor, tijdens creatie krijgen de properties City en Country

expliciet een waarde toegekend

myLocation

- City <- Oostende
- Country <- Belgium
- Distance <- 0

 Collection initializers
◦ laten je toe op een eenvoudige manier collecties te

instantiëren en te seeden

 werkt op een klasse die IEnumerable implementeert,

 of een klasse die een Add-extension method voorziet

 je kan de collectie seeden door gebruik te maken van simpele
waarden, expressies of object initializers…

◦ voorbeeld

Pag. 49

Collection initializer

Collection initializer, in
combinatie met object

initializer

C# feature Object & Collection
initializers

 SELECT
◦ Voorbeeld: omzetten van een collectie van Location objecten naar

lijst van strings…

Pag. 50

 SELECT
◦ Voorbeeld vervolg

◦ werking
 de IEnumerable<Location> wordt overlopen: foreach

 voor elk Location object wordt de lambda expressie aangeroepen

 het Location object is telkens het argument van de lambda expressie

 de lambda expressie retourneert telkens de city property

 al deze objecten worden als IEnumerable<string> geretourneerd

◦ Oefening : print de namen van de steden in de USA,
gesorteerd op naam

Pag. 51

Step4.cs

 SELECT
◦ Voorbeeld: omzetten van een collectie van Location objecten

naar een collectie van CityDistance objecten…

◦ werking
 de IEnumerable<Location> wordt overlopen: foreach

 voor elk Location object wordt de lambda expressie aangeroepen

 het Location object is telkens het argument van de lambda expressie

 de lambda expressie retourneert telkens een nieuw CityDistance object

 al deze objecten worden als IEnumerable<CityDistance> geretourneerd
Pag. 52

Step4.cs

 VAR
◦ voor variabelen gedeclareerd op method niveau (lokale variabelen) kan

je als type var gebruiken

◦ hiermee introduceer je een impliciet getypeerde variabele

◦ dit is nog steeds een sterk getypeerde variabele, maar de compiler
bepaalt zelf het type

 je moet een impliciet getypeerde variabele initialiseren bij declaratie

 merk op: Javascript var verschilt van deze C# var

Pag. 53

C# feature VAR

compiler genereert
zelfde code

 SELECT (met gebruik van var)
◦ voorbeeld

Pag. 54

Via Intellisense kan je zien dat de compiler deze var vertaalt naar
string of IEnumerable<string>, city en cityList zijn sterk getypeerd…

Step4.cs

 Anonieme types
◦ een anoniem type is een type die niet is benoemd, je introduceert het

on-the-fly

 het is een type zonder klassedefinitie

 je maakt een nieuw object aan van het anonieme type door gebruik te
maken van new, zonder type-specificatie

 het type is bepaald door een opsomming van properties

 deze properties zijn read-only

Pag. 55

C# feature Anonymous Types

homeTown is een variabele die
impliciet getypeerd is (var)

homeTown wordt geïnstantieerd zonder een
klassedefinitie, het type van homeTown heeft geen naam,

het type is anoniem,
het type is volledig bepaald door de twee props name en

nrOfInhabitants,
homeTown is sterk getypeerd…

 SELECT – Anonymous types
◦ in LINQ worden anonieme types dikwijls gebruikt om een collectie van

objecten te transformeren naar een collectie van objecten die elk een
subset van de properties van de originele objecten bevatten

◦ Voorbeeld omzetten van een collectie van Location objecten naar een
collectie van anonieme objecten…

Pag. 56

 SELECT – Anonymous types
◦ Voorbeeld vervolg

Pag. 57

de anoniem getypeerde
objecten bevatten de naam
van de stad en de afstand

tot Seattle maar nu
omgezet naar km

Step4.cs

Nog meer LINQ operatoren
Nog een selectie aan handige operatoren…

 Nog meer handige LINQ methods
◦ First()

 retourneert het eerste element uit de collectie

 InvalidOperationException als collectie leeg is

 ArgumentNullException als collectie null is

◦ FirstOrDefault()
 retourneert het eerste element uit de collectie

 retourneert de default waarde als de collectie leeg is

 dit is null voor nullable en reference types

 ArgumentNullException als collectie null is

◦ Interessante overloads
 First(predicate) / FirstOrDefault(predicate)

◦ Last() / LastOrDefault()
 volledig analoog

Pag. 59

 Nog meer handige LINQ methods
◦ voorbeeld

Pag. 60

 Nog meer handige LINQ methods
◦ Skip()

 slaat alle elementen uit de collectie over, tot een bepaalde positie, en
retourneert dan de rest van de elementen

◦ Take()
 retourneert alle elementen van het begin van de collectie tot op een

bepaalde positie in de collectie

◦ SkipWhile/TakeWhile
 analoog maar nu worden elementen overgeslaan/genomen tot we aan een

element komen die aan een bepaald predikaat voldoet

◦ Deze methodes retourneren IEnumerable types en volgen dus
deferred execution

Pag. 61

 Nog meer handige LINQ methods
◦ voorbeeld Skip/Take

Pag. 62

 Nog meer handige LINQ methods
◦ SelectMany()

 vormt elk element van een collectie om tot een IEnumerable,

 en plakt al deze IEnumerables samen tot 1 IEnumerable (“flattening the
result”)

Pag. 63

Step5.cs

 Nog meer handige LINQ methods
◦ GroupBy()

 laat je toe elementen uit een collectie te groeperen

 het resultaat is een IEnumerable van IGrouping

 elke IGrouping bevat een Key en een collectie van bijhorende objecten

Pag. 64

Step5.cs

 Nog meer handige LINQ methods
◦ ToList(), ToArray(), ToDictionary(), …

 vormt een IEnumerable om tot een lijst/array/dictionary/…

 deze conversie zorgt voor immediate execution van de query

Pag. 65

de query wordt hier direct
uitgevoerd want we
gebruiken .ToList()

zonder .ToList() zou Brugge
wel deel van de uitvoer zijn…

 Nog meer handige LINQ methods
◦ All()

◦ Any()

◦ Distinct()

◦ Contains(), ElementAt(), en zo veel meer…

Pag. 66

! zie !
https://msdn.microsoft.com/en-

us/library/vstudio/system.linq.enumerable_methods(v=vs.100).aspx

https://msdn.microsoft.com/en-us/library/vstudio/system.linq.enumerable_methods(v=vs.100).aspx

Expression bodied members

 Ook in properties en methodes kan je gebruik maken
van =>

Pag. 68

Step6.cs

Getter only property

Oefening

 Oefening :

Zie Step7.cs

Pag. 70

- de ForEach() method

- reflection in C#

 Op List<T> is de methode ForEach() gedefinieerd

 Voorbeeld:

Pag. 72

de lambda expression bevat een
anonieme functie die void
retourneert… en is van het type
Action<T>

Action<T> is een anonieme functie met T als parameter en
die void retourneert.

 Reflection

◦ EF en andere ORM tools maken daar gebruik van

Pag. 73

 Voorbeeld : Main methode in Program.cs

Pag. 74

Type discovery : reflection zoekt een
klasse in de assembly met de naam
Linq.Step1.

Creëert een instantie van die klasse

Voert de methode Execute van dit
object uit (null : daar deze methode
geen parameters vereist)

 ScottGu’s Blog - Using LINQ with ASP.NET (Part 1). (n.d.).
Retrieved August 07, 2014, from
http://weblogs.asp.net/scottgu/Using-LINQ-with-ASP.NET-
_2800_Part-1_2900_

 LINQ (Language-Integrated Query). (n.d.). Retrieved August 07,
2014, from http://msdn.microsoft.com/en-
us/library/bb397926.aspx

 Uitgebreide lijst met LINQ voorbeelden op
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b

 Pluralsight:
◦ LINQ Fundamentals with C# 6.0 by Scott Allen
◦ Practical LINQ by Deborah Kurata

 Microsoft Virtual Academy :
◦ Demystifying Linq : https://mva.microsoft.com/en-US/training-

courses/demystifying-linq-12301?l=94qIp9SKB_8804668937#

 LinqPad: playground om Linq queries uit te proberen
https://www.linqpad.net/

Pag. 75

http://weblogs.asp.net/scottgu/Using-LINQ-with-ASP.NET-_2800_Part-1_2900_
http://msdn.microsoft.com/en-us/library/bb397926.aspx
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://mva.microsoft.com/en-US/training-courses/demystifying-linq-12301?l=94qIp9SKB_8804668937
https://www.linqpad.net/

