
Pag. 1

1. Inleiding

2. Debugging

3. Remote Debugging

4. Referenties

Pag.2

 Mogelijke fouten

◦ Syntax fouten

◦ Logische fouten

◦ Run time fouten

Pag. 4

Een programma met syntax fouten kan je niet
uitvoeren. Je moet syntax fouten verbeteren

alvorens je je programma kan uitvoeren

Deze fouten komen voor tijdens de uitvoering
van een programma. Het opsporen en

verbeteren van deze fouten is debugging.

Clone de applicatie https://github.com/WebIII/4thDebugging

 Syntax fouten
◦ Fouten tegen de programmeertaal

◦ Ontdekt at design-time of bij compilatie

 ; vergeten, code die niet gedeclareerde variabelen gebruikt, statische type-check errors,
…

◦ Worden rood onderlijnd weergegeven + tooltip (met muis erover)

◦ Staan opgelijst in de Error List

 menu View > Error List

 na Build > Build solution: een succesvolle build is enkel mogelijk als je code geen syntax
fouten meer bevat

Pag. 5

 Syntax fouten: Error-List

◦ Voor meer info over fout lees je de description! De boodschap is
meestal vrij duidelijk en vertelt wat de fout is 

Pag. 6

Je kan de lijst van getoonde errors op
meerdere manieren filteren

Klik op de Code om on-line
hulp in te schakelen

Dubbelklik op de fout om naar
de lijn code te gaan waar de

error zich voordoet

Los de fouten op!

 Logische fouten
◦ Programma wordt uitgevoerd maar werkt niet zoals verwacht
◦ Een logische fout kan je niet altijd ontdekken

 ze kunnen verborgen blijven tot de code op een bepaalde manier wordt
gebruikt

◦ Foutopsporing via debuggen laat tijdelijke onderbreking van de
uitvoering van het programma toe
 De programma flow te bekijken : bepalen welke methodes werden

aangeroepen

 Lijn per lijn door de code te gaan

 De waarden van variabelen, properties en uitdrukkingen te bekijken en
eventueel aan te passen

 Methodes uit te testen

 ...

◦ Starten Debug proces: menu Debug > Start Debugging, of F5

Pag. 7

 Logische fouten
◦ Unit testing is de belangrijkste

manier om het aantal logische
fouten in je code te
minimaliseren

◦ Tijdens het unit testen wordt je
code uitgevoerd

 je kunt via de debugger deze
uitvoering tijdelijk
onderbreken…

 menu Test > Debug, of
rechtermuisklik op test in Test
Explorer > Debug test

Pag. 8

 Run time fouten
◦ De uitvoering van het programma wordt gestopt door een

fout -> Probeer dit via foutafhandeling op te vangen!
 In debug mode wordt het programma gestopt waar de fout zich

voordoet.

 Anders wordt
omgeleid naar
Error page

◦ Dit wordt later in de cursus behandeld.

Pag. 9

 Run de unit testen
◦ De onderstaande testen falen. We maken gebruik van

debugging om te fouten op te lossen

Pag. 11

 http://www.codeproject.com/Articles/79508/Mastering-Debugging-in-
Visual-Studio-2010-A-Beginn

 Code lijn per lijn uitvoeren om te zien wat er gebeurt

 Maak gebruik van breakpoints

◦ Een breakpoint = een regel waarbij de uitvoering van het programma tijdelijk
onderbroken wordt

◦ Klik de Margin Indicator bar naast de lijn met code of selecteer de code en druk
F9 (rode bol)

◦ Voorbeeld

 De eerste unit test die niet slaagt heeft te maken met het storten (deposit) van geld op
je rekening.

 Plaats breakpoint 1ste lijn in methode Deposit in Bankaccount.

 Start de test in debugging mode: uitvoering stopt bij die regel (gele pijl). Deze lijn moet
nog worden uitgevoerd!

 Om het verloop van de code verder te bestuderen. Gebruik menu Debug, of de Debug
toolbar

Pag. 12

http://www.codeproject.com/Articles/79508/Mastering-Debugging-in-Visual-Studio-2010-A-Beginn

 Commando’s beschikbaar in break mode (Debug menu/Toolbar)
◦ Start/Continue (F5, Debug > Start) : programma (verder) uitvoeren tot

volgende breakpoint of tot einde
◦ Break all : onderbreek programma onmiddellijk en ga naar instructie

die wordt uitgevoerd
◦ Stop : stop de uitvoering en exit de debugger (Shift + F5, Debug > Stop

Debugging)
◦ Restart : stop uitvoering en start programma opnieuw (Ctrl+Shift+F5,

Debug > Restart)
◦ Toon volgende instructie : ga naar de volgende instructie die zal

worden uitgevoerd
◦ Step into (F11, Debug > Step into) : voer volgende lijn code uit. Is de

volgende lijn een methode, voer eerste instructie methode uit.
◦ Step over (F10, Debug > Step Over) : voer volgende lijn code uit. Is dit

een methode, voer de methode volledig uit als zijnde 1 instructie
◦ Step out (Shift+F11, Debug > Step out) : voer de rest van de instructies

in de huidige methode uit en onderbreek als dit gedaan is.

Pag. 13

 Voorbeeld
◦ Eénmaal in break mode

◦ Druk F11, om de lijn code uit te voeren.

◦ Druk een aantal maal op F11 : voert aangeduide lijn uit, …

◦ Zie hoe je via F11 uiteindelijk in de code de constructor Transaction
springt

◦ Druk vervolgens Shift + F11 : de methode wordt volledig uitgevoerd, …

◦ Druk F11

◦ Druk F5 : programma voert verder uit tot volgend breakpoint/einde

Pag. 14

 De debugging windows (Debug > Windows)
◦ De breakmode wordt vaak gebruikt om waarden van

variabelen of expressies te bekijken, en de veranderingen die
de waarde ondergaat, op te volgen. Dit kan op verschillende
manieren:
 Plaats muisaanwijzer boven de variabelenaam.

 Quick watch : toont de waarde van een variabele, uitdrukking

 Autos Window : toont de namen van de variabelen, waarden en
gegevenstypes van huidig statement en de voorgaande coderegel

 Local Window : tonen/aanpassen van waarden variabelen in
huidige procedure/klasse (locale variabelen)

 Watch window : om de waarde van een variabele, .. te volgen en
aan te passen. Toont naam, waarde en gegevenstype

◦ Of om code uit te testen
 Immediate window

Pag. 15

◦ DataTips: met muisaanwijzer over variabele

 Voorbeeld

 Via F10 komen we aan de regel Balance =+ amount

Pag. 16

Als we de muisaanwijzer boven Balance
plaatsen krijgen we de waarde te zien in

een DataTip

Klik op de pin om de DataTip het scherm te houden (ook
via rechtermuisklik op Balance > Pin to source), zie debug

menu voor beheer van DataTips

Bij complexere types kan je inzoomen op het gewenste niveau van
detail, ga bv. met muisaanwijzer over transactions en klap open…

Druk op ctrl-toets om de code op de voorgrond te brengen…

◦ De Quick Watch

 Laat je toe variabelen en expressies te bekijken en te evalueren

 Selecteer variabele en druk CTRL+ALT+Q of kies Quick Watch uit
context sensitief menu

 Quick Watch toont 1 variabele/expressie tegelijkertijd

 Je moet het venster sluiten om verder te kunnen debuggen

 Je kan van hieruit wel een variabele toevoegen aan het Watch window

Pag. 17

◦ Variable Windows

 om variabelen en expressies te bekijken, te evalueren en te
editeren

 voor elke variabele/expressie zie je naam, type en de waarde

 3 soorten

Pag. 18

Locals Autos Watch
Wordt automatisch gevuld

door de debugger met
variabelen binnen de huidige

context of scope
(~methode)

Wordt automatisch gevuld
door de debugger met

variabelen in de huidige
code-regel en in de

voorgaande code-regel

Hier bepaal je zelf welke
variabelen/expressies je wilt

toevoegen

◦ Voorbeeld Locals Window:

 Debug > Windows > Locals of CTRL+ALT+V,L

Pag. 19

Locals

Wordt automatisch gevuld door de
debugger met variabelen binnen de

huidige context of scope (~methode)

Je kan ook zoeken op Name. Zoek eens “Balance”

◦ Voorbeeld Autos Window:

 Debug > Windows > Autos of CTRL+ALT+V,A

Pag. 20

Autos

Wordt automatisch gevuld door de
debugger met variabelen in de huidige
code-regel en in de voorgaande code-

regel

◦ Voorbeeld Watch window:
 Debug > Windows > Watch

 Rechtermuisklik op variabele, selecteer in context menu Add
Watch of via Debug > Windows > Watch (4 vensters)

 Voorbeeld
 Voeg Balance en amount toe aan het Watch window

 Controleer of de waarde telkens verandert (kleurt rood bij
verandering) als je door de code stapt met F11. Controleer
startwaarde en eindwaarde

 Voeg eventueel ook andere expressies toe. Zoek oorzaak van de foute
Balance. Pas code aan en controleer opnieuw.

Pag. 21

Watch

Hier bepaal je zelf welke
variabelen/expressies je wilt toevoegen

◦ Het Watch window

 Elke instructie die geldig is binnen een programma, werkt binnen
een watch venster

 Voorbeeld : System.Threading.Thread.Sleep(2000) -> programma zal 2
seconden wachten (zie hourglass). Zal dan “Expression has been
evaluated and has no value” teruggeven om aan te geven dat de
instructie toch werd uitgevoerd maar geen return waarde heeft

 Zoals bij de andere variabele windows kan je ook de waarde van
een variabele aanpassen…

 Voorbeeld

 Vervang de waarde van Balance, plaats deze op 300. Wat gebeurt er?

Pag. 22

 Het venster Immediate
◦ Kent 2 modi

 Command : intypen van Visual Studio opdrachten

 SaveAll, Close, Help, Exit,...

 Immediate : Invoeren van instructies terwijl het programma
onderbroken is

 Waarde opvragen van variabele, property of uitdrukking: ?

 Waarde aanpassen van variabele of property

 Procedures, methodes uitvoeren

Pag. 23

 Breakpoints – geavanceerde opties
◦ Debug > Windows > Breakpoints

 Beheer van breakpoints: verwijderen, toevoegen, enable/disable

Pag. 24

disable/enable of verwijderen van
breakpoints die voldoen aan de

zoekcriteria

verwijderen van geselecteerde breakpoints

Je kan een breakpoint tijdelijk
disablen/enablen. Wanneer een
breakpoint disabled is, wordt het
genegeerd tijdens het debuggen.

enable/disable van een breakpoint kan
ook via toolbar,

of via context sensitief menu…

 Breakpoints – geavanceerde opties
◦ Settings

 rechtermuisklik op breakpoint in breakpoints venster

 of toolbar, of context sensitief menu

 dan verschijnen settings in een
peek window, dit is handig in gebruik

Pag. 25

 Breakpoints – geavanceerde opties
◦ Settings - Conditions:

 conditional expression: breakpoints zullen een onderbreking in de
code veroorzaken wanneer er aan een bepaalde conditie is voldaan,
of wanneer een bepaalde conditie is veranderd…

 hit count: breakpoints zullen een onderbreking in de code
veroorzaken wanneer ze een hit count bereiken, of een veelvoud van
een hit count bereiken, of boven een bepaalde hitcount gaan…

Pag. 26

Dit breakpoint zal actief zijn wanneer er
een tweede keer langs wordt gepasseerd,

én Balance == 0

In 3.0 kan je in een watch
window rechtsklikken op
een variabele > Break
when value changes

 Breakpoints – geavanceerde opties
◦ Settings - Actions:

 log message: gebruik vrije tekst, variabelen (gebruik {}), of
voorgedefinieerde systeemvariabelen (gebruik $) om een bericht
naar het output window te sturen

 je kan instellen of uitvoering moet doorgaan of moet onderbroken
worden

 merk op hoe alles steeds werkt met IntelliSense…

Pag. 27

In output window na het passeren van de
breakpoint

 PerfTips
◦ Geven informatie over de performantie (~tijd) van je code

 wanneer je stap per stap door de code loopt

 of van breakpoint tot breakpoint

Pag. 28

PerfTip toont hoe lang het duurt om deze
methode uit te voeren (d.i. van eerste

breakpoint tot tweede), klik op een PerfTip
om de Diagnostic Tools te openen…

 Diagnostic tools
◦ Debug > Windows > Show Diagnostic

tools

◦ Meer gedetailleerde info over je debug
sessie

 Voor elke stap die tijdens de debugsessie
genomen wordt kan je analyseren wat
impact was op geheugen/tijd

 Je ziet hoeveel exceptions er reeds
opgevangen zijn

Pag. 29

 Call stack
◦ Volgen van de flow van programma (info over elke

functieaanroep)

◦ Ctrl+Alt+C of Debug > Windows > Call Stack

Pag. 30

 Run to click debugging
◦ Kies Debug > Step Into. De code stopt voor de uitvoering van

de eerste lijn code of plaats een breakpoint en klik F5
◦ Hover over de lijn waar je een volgend breakpoint wil

plaatsen. Er verschijnt een groene pijl “Run execution to
here”. Klik op de groene pijl en de code wordt tot daar
uitgevoerd. Ook nu kan je de variabelen bekijken.

◦ Selecteer bvb Deposit > Rechtsklik > Step into Specific en dan
wordt de code uitgevoerd tot de eerste lijn in deze methode.

◦ Hier kan je ook werken met “Run execution to here”

Pag. 31

 Debug.Write(Line)(If) commando
◦ Debug class is onderdeel van System.Diagnostics.

◦ Print een boodschap naar de Visual Studio console.

◦ De uitvoering ervan gebeurt in debug mode (je hoeft de
instructies dus niet te verwijderen bij release!)

 merk op dat je wel je code bezoedelt met extra statements

◦ Tijdens runnen kan je Output venster bekijken (View > Output
Window).

Pag. 32

 Edit and continue
◦ Als de debugger stopt bij breakpoint, kan je code aanpassen en

verdergaan met debuggen. VS hercompileert de applicatie en
hercreëert de status van je applicatie op het debugger break moment

◦ Deze optie is standaard enabled

 Enable/Disable:

 Project > Properties > Web > onderaan in Debuggers sectie “Enable Edit
and Continue”

 Run applicatie en ga ergens in breakmode. Voeg een lijn code toe (bvb var
i=1;) en ga verder met de uitvoering

Pag. 33

 Nog dieper gaan:
◦ Script explorer : debuggen van scripts
◦ Threads

 Toont threads igv multi threaded applicaties

◦ Modules
 Toont de dll’s en exe’s gebruikt door het project

◦ Memory venster
 Toont stukje geheugen gebruikt door applicatie

◦ Disassembly
 Toont de assembly code die overeenkomt native code gecreëerd

door de Just-in-Time (JIT) compiler, (niet de MSIL code
gegenereerd door de Visual Studio compiler.)

◦ Registers
 Toont de inhoud van de registers

Pag. 34

 Voorbeeld
◦ Withdraw_Amount_CausesTwoTransactions Test van de SavingAccount

faalt nog steeds.
 Dit is een logische fout: de SavingAccount zou 3 transacties moeten bevatten

en bevat er maar 1.
 Wat is de reden?

 In de code voor Withdraw bij SavingsAccount zien we niet een direct een probleem.
 We kunnen de fout isoleren door de aanroep naar Deposit te volgen.
 In Withdraw wordt er wel een transactie aangemaakt maar blijkbaar is daar later

geen spoor meer van.
 De logica van Withdraw klopt niet…
 De testen voor Withdraw zijn onvolledig  : een deel van de te verwachten logica

wordt niet getest…

◦ Oplossing : TDD
 1. Schrijf test die logische fout controleert bvb

Withdraw_Amount_AddsTransaction
 2. Test moet falen (nu kan je debuggen om de fout te vinden)
 3. Pas de code aan
 4. Test moet slagen

Pag. 35

 Het is belangrijk dat je alle gedrag test. Schrijven van
testen doet je nadenken over het gedrag van een
methode.

 Ook fouten die door klanten of test team worden
doorgegeven of nieuwe functionaliteiten, dien je op
een TDD aan te pakken.

Pag. 36

 Debug configuratie
◦ Gebeurt automatisch bij eerste maal klik op Debug. De

web.config wordt aangemaakt met

◦ Afzetten in productie!

Pag. 37

<compilation debug="true"/>

 Debug mode en exceptions
◦ Normaliter : Het programma wordt onderbroken enkel bij unhandled

exceptions. De debugger stopt in dit geval bij de lijn code waar exception zich
voordoet. De debugger stopt niet bij afgehandelde exceptions.

◦ Kan je aanpassen : menu Debug > Windows > Exceptions Settings

◦ In het Exceptions Settings venster kan je aangeven bij welke CLR exceptions je
een break wenst

◦ De lijn code waar de exception zich voordoet (of enkele regels ervoor) is een
goed startpunt voor debugging

◦ Voeg onderstaande code

Pag. 38

 Debug mode en exceptions
◦ Als de exception niet wordt opgevangen, wordt de uitvoering

van de code onderbroken

 Voeg in de methode Main onderaan volgende code toe en run

 savingsAccount.Withdraw(1000M);

 De code wordt onderbroken en de melding wordt getoond

Pag. 39

 Debug mode en exceptions
◦ Vang je de exception op, dan wordt het runnen van de code niet

onderbroken.
 Pas de code als volgt aan en run opnieuw

 In de Diagnostic Tools kan je in de Summary tab zien dat er een Exception
geworpen is. Als je op de tab Events klikt kan je de detail van de
Exception bekijken

 Wens je toch te stoppen bij elke exception die geworpen wordt: Debug >
Window > Exception Settings en vink Common Language Runtime
Exceptions aan

Pag. 40

 Debug mode en exceptions
◦ Normaliter : Programma zal ook stoppen bij exceptions in gegenereerde

code

◦ Kan je aanpassen : “enable or disable Just My Code debugging”

 In Tools menu, kies Options.

 In Options dialog box, open Debugging node en kies General.

 Vink Enable Just My Code aan of uit.

Pag. 41

 IntelliTrace
◦ Beschikbaar in Visual Studio 2019 Enterprise edition

◦ Advanced debugging : Met IntelliTrace neem je de acties op
en kan je dit later terug bekijken, afspelen

◦ Hiermee kan je ook data in productie verzamelen

◦ Meer op

 http://blogs.msdn.com/b/visualstudioalm/archive/2015/01/16/in
tellitrace-in-visual-studio-ultimate-2015.aspx

 http://channel9.msdn.com/Events/TechEd/NorthAmerica/2012/D
EV365

 https://channel9.msdn.com/Series/Visual-Studio-2012-Premium-
and-Ultimate-Overview-FRA/IntelliTrace-Experience-in-Visual-
Studio-2015-FRA

Pag. 42

http://blogs.msdn.com/b/visualstudioalm/archive/2015/01/16/intellitrace-in-visual-studio-ultimate-2015.aspx
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2012/DEV365
https://channel9.msdn.com/Series/Visual-Studio-2012-Premium-and-Ultimate-Overview-FRA/IntelliTrace-Experience-in-Visual-Studio-2015-FRA

 Als website bvb gepubliceerd op Azure

 Meer op
https://app.pluralsight.com/library/courses/debugging
-visual-studio-2019/table-of-contents

Pag. 43

https://app.pluralsight.com/library/courses/debugging-visual-studio-2019/table-of-contents

 Debugging in Visual Studio :
https://msdn.microsoft.com/en-us/library/sc65sadd.aspx

 Pluralsight: Visual Studio, a first look at the IDE –
Debugging Improvements
http://www.pluralsight.com/courses/visual-studio-2015-
first-look-ide

 Mastering Debugging in Visual Studio - A Beginner's Guide :
http://www.codeproject.com/Articles/79508/Mastering-
Debugging-in-Visual-Studio-2010-A-Beginn

Pag. 45

https://msdn.microsoft.com/en-us/library/sc65sadd.aspx
http://www.pluralsight.com/courses/visual-studio-2015-first-look-ide
http://www.codeproject.com/Articles/79508/Mastering-Debugging-in-Visual-Studio-2010-A-Beginn

