Opgave oefening hoofdstuk 3 en 4: BLACKJACK - model

1. De spelregels van Blackjack
Blackjack is een kaartspel en wordt ook eenentwintigen genoemd. Er is één dealer en minstens één
speler. Voor de eenvoud gaan we dit spel uitwerken voor 1 speler.

De speler speelt tegen de dealer. Het doel is kaarten te trekken totdat het totaal zo dicht mogelijk de
21 benadert zonder deze waarde te overschrijden. De speler wint als zijn totaal kleiner of gelijk aan 21
is, en hoger dan dat van de dealer. Hij verliest als zijn totaal hoger is dan 21 of lager of gelijk is aan
dat van de dealer. In dit laatste geval mag de totale waarde van de dealer de 21 niet overschrijden.

De speler en de dealer beginnen met twee kaarten. Enkel de eerste kaart van de dealer is zichtbaar.
De speler begint dan: hij mag kaarten trekken om zo dicht mogelijk 21 te benaderen. Wanneer de
speler tevreden is met zijn totaal kan hij passen. Dan is de dealer aan de beurt. De dealer trekt
kaarten tot zijn totaal hoger of gelijk aan het totaal van de speler is.

Elke kaart staat voor zijn aangegeven waarde, behalve de prentjes (jack, queen, king) die tellen voor
10. De aas telt voor 1 of 11, wat het best uitkomt. Indien je eerste twee kaarten samen 21 vormen (10
of prentje gecombineerd met aas) dan heb je Blackjack en win je.

Het doel van deze oefening is het domein voor Blackjack uit te werken. We hebben aandacht voor het
ontwerp, de implementatie, de unit testen en debuggen. In deze les zullen we het domein gebruiken in
een console-applicatie. In een latere les zullen we ditzelfde domein gebruiken in een web-applicatie.

Voorbeeld spelverloop

Start van een nieuw spel...

—SpadesTuwo—7/7—
Dealer total = 2

—Diamonds/Ten—Hearts Five—
Player total = 15

Enter wvour choice:
1. Another card
2. Pass

Enkel de eerste kaart van de dealer is zichtbaar, de tweede ligt omgekeerd op tafel en dit is aangegeven als ?/?.
Het totaal van de niet omgekeerde kaarten wordt getoond.

Player kiest voor Pass...

—SpadesTwo—DiamondsTwo——Clubs Eight—Clubs . Five-—
Dealer total = 17

—Diamonds/Ten—Hearts - Five—

Player total = 15

Game ends: Dealer wins
Do you want to play again? <usnl>

Voorbeeld spelverloop2

Start van een nieuw spel...

—SpadessSix—7 /7
Dealer total = 6

—Hearts Ace—Diamonds/Three—
Player total = 14

Enter wvour choice:
1. Another card
2. Pass

Player kiest voor Another card...
—Spades A Bix—7/7—
Dealer total = 6

—Heartz Ace——Diamonds-Three—Spades Four—

Enter vour choice:
1. Another card
2. Pass

Player kiest voor Pass...

—SpadessSix——Diamonds.Queen—Clubs Five—
Dealer total = 21

—Hearts Ace——Diamonds.Three—Spades . Four—

Player total = 18

Game ends: Dealer wins
Do you want to play again? <ysn2>

PWNEDN

. Voorbereidend werk

Download de folder genaamd StarterFiles van chamilo.

Maak een nieuwe .Net Core Console applicatie met de naam BlackJackGame aan in VS.

Voeg het project toe aan git

Voeg een nieuw project van het type xUnit Test Project toe aan je solution, noem het
BlackJackGame.Tests. Verwijder de klasse UnitTest1.cs

Voeg in BlacklackGame.Tests een referentie toe naar BlacklackGame (rechtermuisklik op
references > Add reference en selecteer in de categorie solution BlacklackGame). Zorg ervoor dat
de solution compileert.

Commit

3. Het ontwerp

Maak een folder genaamd Models in het BlacklackGame project. Doe hetzelfde in je
BlackJackGame.Tests project.

De folder StarterFiles bevat CardEnums.cs met de enumeraties Suit en FaceValue en
GameState.cs met de enumeratie GameState. Voeg deze eerst toe aan het BlackJackGame
project in de Models folder.

Hieronder kan je het klassendiagram vinden. Maak de klassen aan. De methodes gooien initieel
een NotimplementedException. Maak ook het klassendiagram aan.

I
Card A

Class

4 Properties
& FaceValue { get: } : FaceValue
HF Suit { get: }: Suit

4 Methods

& Card(Suit suit, FaceValue faceValue)

t BlackJackCard

Class
+ Card

4 Properties
F FacelUp{get set; }: bool
F Value{get}:int

4 Methods

@ BlacklackCardiSuit suit, FaceValue faceValue)
@ TurnCard() : void

—~,

| Deck
Class

4 Fields
aa _random : Random
4 Methods

@ Deck()
@ Draw{} : BlackJackCard
@y Shufflel) : void

93 _deck

0* _cards : IList<BlackJackCard >

oa _cards @ IList<BlackJackCard »

F PlayerHand | J¢ DealerHand

" Hand

Class

4 Properties

J# Cards{get; }: IEnumerable<BlacklackCard>
& NrOfCards { get: }:int
F Value {get:}int
4 Methods
% AddCard(BlackJackCard blacklackCard) : void
$a CalculateValue() @ int
% Hand(
% TurnAllCardsFacelp() : void

BlacklJack

Class

4 Fields

B FaceDown : boal
E FaceUp : boal

| 4 Properties

JF GameState { get; set; } : GameState
4 Methods
-(f"a AddCardToHand(Hand hand, bool faceUp) : void
"b; AdjustGameState([GameState? gameState = nulll) : void
% BlackJack(
' Blacklack(Deck deck)
W Deal(: void
© GameSummary() : string
% GivePlayerAnotherCard() : void
@z LetDealerFinalize]) : void
0 PassToDealer() : void

Suit
Enum

Hearts
Spades
Diamonds
Clubs

FaceValue
Enum

Ace
Two
Three
Four
Five
Six
Seven
Eight
Mine

Jack
Queen
King

GameState
Enum

GameOver
PlayerPlays
DealerPlays

4. TDD: Unit testen en implementatie

In de filosofie van Test Driven Development gaan we nu het domein implementeren. We gaan steeds
eerst aandacht hebben voor de testklasse, alvorens we de domeinklasse implementeren. Volgende
cyclus gaan we dus meerdere keer doorlopen:
1. Testklasse implementeren
Bij test uitvoering falen de testen
Domeinklasse implementeren
Bij test uitvoering slagen de testen, bij falen kunnen we debuggen.
Commit als alle testen slagen

vk wnN

CardTest :
Deze klasse is reeds voorzien in de StarterFiles, voeg ze toe aan je test project.

Card : bevat de gegevens van 1 kaart, nl. suit (hearts,...), en faceValue (1, 2, ...king)
- bevat de properties Suit en FaceValue, beide van bijhorend enumeratie type
- bevat 1 constructor voor het aanmaken van 1 kaart
Implementeer de klasse Card, zorg dat alle unit testen slagen.

BlackJackCardTest :
- Deze klasse is reeds voorzien in de StarterFiles maar is nog niet volledig, voeg ze toe aan je test
project.
- Drie methodes bevatten reeds een Act en Arrange gedeelte maar hebben een “Not yet
implemented” fact.
Vervang dit door een correcte Assert.

BlackJackCard : erft van Card. Bevat extra gegevens horend bij een BlackJack kaart
- property FaceUp : beeld op kaart zichtbaar of niet
- property Value : de BlackJack waarde van een kaart. Als het beeldje op de kaart niet zichtbaar
is is de waarde O
- een constructor : bij creatie van een kaart is het beeldje niet zichtbaar
- de methode TurnCard : draait de kaart om
Implementeer de klasse BlacklJackCard, zorg dat alle unit testen slagen.

DeckTest : Maak zelf deze testklasse aan en zorg voor volgende testen:
- methode Draw retourneert een object van type BlacklackCard
- constructor levert een deck op met 52 BlackJackCards
- methode Draw werpt een InvalidOperationException wanneer het deck geen kaarten bevat

Deck : een spel kaarten

- _cards : de Blacklack kaarten

- De default constructor maakt een deck van 52 BlackJack kaarten aan, allen met het beeldje
naar onder.

- Draw : geeft de bovenste BlackJack kaart uit het deck terug. Als er geen kaarten meer zijn
wordt een InvalidOperationException geworpen.

- Shuffle (private methode) : mengen van de kaarten

Implementeer de klasse Deck, zorg dat alle unit testen slagen.

Opm : voor het aanmaken van een deck kan je gebruik maken van de enumeraties

foreach (Suit s in Enum.GetValues(typeof(Suit)))

{
}

HandTest :

Deze klasse is reeds voorzien in de Starter maar nog niet volledig, voeg ze toe aan je test
project. Implementeer (Arrange/Act/Assert) de testmethodes die nog “not yet implemented”
zijn. Groepeer testen, waar mogelijk in Theories

Hand : een speler

Attribuut _cards (IList) : bevat de Blacklack kaarten van de speler

Property Cards(IEnumerable) : retourneert de BlackJack kaarten van de speler (enkel getter)
Property NrOfCards: retourneert aantal kaarten van speler

Property Value : de totale waarde van de kaarten in de hand van de speler.

Hand : constructor

AddCard : voegt een BlackJack kaart toe aan de hand van de speler

TurnAllCardsFaceUp : draait alle kaarten met beeldje naar boven

Implementeer de klasse Hand, zorg dat alle unit testen slagen.

BlackJackTest :
Deze klasse is reeds voorzien in de Starter en bevat volgende testen. Vooraleer je begint lees je
eerst de toelichtingen die achteraan in dit document staan (zie *). Maak eerst de benodigde
subklassen aan zodat deze klasse geen foutmeldingen meer geeft.

bij een nieuw spel (zonder blackjack) bevatten DealerHand en PlayerHand elk 2 kaarten
bij een nieuw spel (zonder blackjack) bevat de DealerHand een eerste kaart FaceUp en een
tweede kaart !FaceUp
bij een nieuw spel (zonder blackjack) bevat de PlayerHand twee kaarten die FaceUp zijn
bij een nieuw spel (zonder blackjack) is de GameState gelijk aan PlayerPlays
GivePlayerAnotherCard voegt een kaart toe aan de playerHand
GivePlayerAnotherCard moet een InvalidOperationException werpen wanneer de GameState
verschillend is van PlayerPlays
PassToDealer moet leiden tot een GameState gelijk aan GameOver
GameSummary retourneert null wanneer de GameState niet gelijk aan GameOver is.
GameSummary bij GameOver is correct

o wanneer een BlackJack gespeeld wordt
wanneer PlayerHand en DealerHand gelijke waarde hebben
wanneer PlayerHand boven 21 gaat
wanneer PlayerHand onder 21 blijft en DealerHand boven 21 gaat
wanneer PlayerHand onder 21 blijft en DealerHand onder 21, maar met een hogere
waarde in de DealerHand

O
O
O
O

BlackJack : het spel

2 constanten : FaceDown (waarde false), FaceUp (waarde true)

DealerHand : hand van de dealer

PlayerHand : hand van de player

GameState : status van het spel : player is aan de beurt, de dealer is aan de beurt of game over
BlacklJack : zorgt voor de initialisatie van het spel : nieuw deck, nieuwe hand player en nieuwe
hand dealer. Player en dealer krijgen elk 2 kaarten. Bij player beide faceUp, bij dealer 1 faceUp
en 1 faceDown. Mogelijk heeft de player nu reeds BlackJack.

- GivePlayerAnotherCard : geeft een nieuwe kaart aan de player, tenminste als de GameState
PlayerPlays is. Past daarna eventueel de GameState van het spel aan.
- PassToDealer : De dealer is aan de beurt. Zijn kaarten worden omgedraaid. De GameState
wordt DealerPlays. De dealer speelt verder tot GameState GameOver bereikt.
- GameSummary : null indien spel nog niet beéindigd is. De mogelijkheden :
- Player Burned, Dealer Wins
- Dealer Burned, Player Wins
- Equal, Dealer Wins
- Dealer Wins
- Player Wins
- BLACKJACK

Voorstel voor private methodes

- AddCardToHand(Hand hand, bool faceUp) : geeft een kaart uit het deck aan de betreffende
speler, al dan niet faceUp.

- AdjustGameState (GameState? gamestate=null): de GameState wordt aangepast. Maakt
gebruik van een nullable type GameState en een optional parameter.
Bij aanroep kan je eventueel een nieuwe gameState doorgeven: bv. wanneer de speler past
weet je dat de nieuwe GameState DealerPlays is.
Verder wordt er in deze methode getest of de GameState moet aangepast worden omdat
speler/dealer boven de 21 gaan. Bv. telkens wanneer de dealer een kaart trekt kan je deze
methode aanroepen zonder parameter. Er wordt dan gewoon gekeken of het totaal van de
dealer boven dat van de speler, of boven 21, uitkomt. In dat geval gaat de methode de
GameState op GameOver zetten.

- Deal: Player en dealer krijgen elk 2 kaarten. Bij player beide faceUp, bij dealer 1 faceUp en 1
faceDown. Stelt de GameStatus in. Mogelijk heeft de player nu reeds BJ.

- LetDealerFinalize : dealer speelt verder tot GameOver

Implementeer de klasse BlackJack, zorg dat alle unit testen slagen.

In de StartFiles vind je Program.cs. Deze bevat de applicatielogica. Vervang de bestaande Program.cs
door deze versie die je in de startfiles vindt. Veel plezier met het spelen...

(*) Toelichtingen bij BlackJackTest

Voor de meeste van deze testen moet je controle hebben over de kaarten die zullen uitgedeeld
worden. Hoe kan je bijvoorbeeld testen op Blackjack indien je niet met zekerheid een Blackjack kan
uitdelen? Hoe zorg je ervoor dat je kan testen of het spel correct reageert wanneer de dealer wint als
je de kaarten niet zo kan uitdelen dat winst door de dealer mogelijk is?

Een mogelijke oplossing is een deck kaarten te injecteren in BlackJack. Voeg hiervoor een tweede
constructor aan de klasse BlackJack toe die dit toelaat: de constructor kent een parameter van het
type Deck, en tijdens constructie wordt de waarde van deze parameter toegekend aan het field deck.

public BlackJack(Deck deck)

{
this.deck = deck;

// other code
}

Nu kunnen we zelf onze deck kaarten voorbereiden door subklassen van de klasse Deck te maken. In
deze subklassen kunnen we tijdens constructie de gewenste kaarten in de lijst met kaarten stoppen.
Dit veronderstelt wel dat we in die subklassen aan die lijst kunnen. Maak hiervoor het field cards uit
de klasse Deck protected ipv private.

protected IList<BlackJackCard> _cards;

Via collection initializers kunnen we in onze constructor op een mooie manier de gewenste deck
aanmaken. Een voorbeeld van een subklasse die een BlackJack bevat en die je ook in de starter vindt:

public class PlayerBlackJackWinDeck : Deck {

public PlayerBlackJackWinDeck() {
_cards = new List<BlackJackCard>

{
//dealer

new BlackJackCard(Suit.Clubs, FaceValue.Seven),
new BlackJackCard(Suit.Clubs, FaceValue.Seven),

//player
new BlackJackCard(Suit.Clubs, FaceValue.Ace),
new BlackJackCard(Suit.Clubs, FaceValue.Ten),

//dealer
new BlackJackCard(Suit.Clubs, FaceValue.Ten),

1

In onze testen kunnen we nu een Blacklack spel aanmaken met de gewenste deck:

BlackJack game = new BlackJack(new PlayerBlackJackWinDeck());

Maak in het Unit test project een folder Decks aan in de folder Models, en voeg er de subklassen aan
toe.

