HoGent

BEDRIJF
EN
ORGANISATIE

Hoofdstuk 3: Model — Unit testen

HoGent

Hoofdstuk 3: Domein — Unit testen

1. Klassen

2. Associaties — collections
3. Overerving

4. Polymorfisme

5. Abstracte klasse

6. Interface

7. Statische members

8. Github

9. Unit Testen

HoGent Pag.3

De Banking applicatie

HoGent

De Banking applicatie

» Het ontwerp van de domein laag

{? |BankAccount

BankAccount
Clazs

= Fields

ﬂa _atcountMumber : string
=l Properties

& AccountMurmnber { get set 1 string

& Bzalznce | get set 1 - decimal

J MumberOfTransactions { get }-int
=l Methods
BankAccount{string account)
Deposit{decimal amount) - void
Equazlsiobject ohbj) - bool
GetHashCode]) - int
GetTranzactions{DateTime? from, DateTime? till) : |IEnumerable<Transaction >

TaString{) : string

eceaaaa

Withdraw{decimal amount) : void

ai

_transactions : IList<Transaction >

£

-
SavingsAccount
Class
= BankAccount

= Fields

EL WithdrawCost - decimal
= Properties

J& |nterestRate | get set } - decimal
= Methods

@ Addinterest() : veid
@ SavingsAccountistring bankAccountMumber, decimal interestRate)

@ Withdraw{decimal amount) : void

NMUactiL

.

Transaction R
Class

= Fields

ﬂa _amount : decimal
= Properties
Armount { get set } - decimal
Date0fTrans { get set | - DateTime
lsDeposit { get } - bool
IsWithdraw { get } - bool
TranzactionType { get st } : Tramsacti..
= Methods

e

@ Tranzaction{decimal amount, Transact..
-

TransactionType #
Enum

Deposit
Withdraw

Pag. 5

De Banking applicatie

» Sprint backlog

Banking applicatie & & Privaie

Maak domein aan Unit test domein

Creéer klasse BankAccount Creéer unit test project Banking. Tests

Creéer klasse Transaction Unit test BankAccount

(Assocaties)
Unit test Transaction, BankAccount
Creéer klasse SavingsAccount met Transactions, SavingsAccount
(Overerving)
Refactor unit test
BankAccountTransaction - gebruik
van Theory en MemberData

Implementeer overridable methods
van klasse Object

Implementeer interface IBankAccount Add a card. ..

Add a card...

HoGent Pee

De Banking applicatie

» Aanmaken van het Banking project
o Create a new Project> C# (language) en Console (project type)
> Console App(.Net Core)

o Geef naam “Banking” in en kies een locatie. Vink place
solution and project in same directory uit

Search for templates (Alt+S) ° ~ Language ~ Platform ~ Project type ~

Filtering by: C#, Console Clear filter

ﬁ Console App (.NET Core) . .
2 A project for creating a command-line application that can run on .NET Core on CO nfl g U re yO U r n eW p rOJ ect

Windows, Linux and MacOS.

C# Linux macO5 Windows Console Console App (NET COI‘E) C# Linux ma c0S Windows Consale
ﬁ' Console App (.NET Framework) Project name
A project for creating a command-line application
C# Windows Console
Location
C\temp
Solution name)
Banking

H 0 G e n t |:| Place solution and project in the same directory

De Banking applicatie

» Aanmaken van het Banking project

o We splitsen de use case op in taken, die we, eens afgerond,
committen. We werken in een lokale git repository. In de
Solution Explorer > rechtsklik solution Banking > Create Git
Repository. (of onderaan SN in

* Dit creért reeds 2 commits. Klik onderaan op master > View
History

master

%" MNew Branch...

Manage Branches

'f__g View History... l 96ec5486 Karine Samyn 13-5ep-19 11:07:48 Add project files.
2dfcbc3c Karine Samyn 13-5ep-19 11:07:46 Add .gitignore and .gitattributes.
Fetch
Pu
Push

0 4 Banking %' master «

HoGent Pag. 8

De Banking applicatie

» Aanmaken van de domein laag

o Maak een folder “Models” aan binnen het Banking project.
Daarbinnen de folder “Domain”. Dit bevat de domeinklassen.
Deze zullen allen behoren tot de namespace
Banking.Models.Domain

* (rechtsklik Banking project > Add > New folder)

HoGent Pag. 9

Klassen

HoGent

1. Klassen

» Aanmaken van een klasse

» Members van een klasse
o Fields

Methods

Constructor

Destructor

Properties

Region

(0]

(@)

o

O

(0]

» Aanmaken members van een klasse
» Gebruiken van een klasse
» Class View/Object Browser

HoGent Pag. 11

1. Klassen

» Aanmaken van een domeinklasse BankAccount

(eenvoudige versie)

| BankAccount A
Class

=l Fields

ﬂa _accountMumber: string
"i"a _balance : decimal

= Methods

@ BankAccount(string accountMumber)
@ Deposit{decimal amount) : void Wordt later
@ GetBalance() : decimal
. . vervangen door een
E’a SetBalanceldecimal walue) : void p
@ Withdraw(string amount) : void roperty

HoGent Pag. 12

1. Klassen

» Aanmaken van een domeinklasse BankAccount

o Rechtsklik op de folder Domain > Add > New Item > Class.
Geef de klasse de naam “BankAccount”

o |n de folder Models/Domain wordt bestand BankAccount.cs
aangemaakt

wwwwwwwww - Banking

b Online

* Naming conventions:
https://github.com/aspnet/Home/wiki/Engineering-guidelines

HoGent Pag. 13

https://github.com/aspnet/Home/wiki/Engineering-guidelines

1. Klassen

» Aanmaken van een domeinklasse

> Dubbelklik BankAccount.cs in Solution Explorer, dit opent de
code editor

> De code:

* using statements: de gebruikte assemblies

* er staan een aantal niet gebruikte using statements. Ga er over met de
muis, het lampje verschijnt en klik “Remove unnecessary usings”. Of
run code cleanup.

* namespace Banking.Models.Domain {}

- Een namespace is een logische groepering van gerelateerde klassen
(packages in Java).

* Alle klassen in de folder Models/Domain behoren tot deze namespace.

namespace Banking.Models.Domain

{

class BankAccount

HoGent . S_—

1. Klassen

» Aanmaken van een domeinklasse

* class BankAccount {}: de klasse definitie

+ Access modifiers voor een “niet geneste” klasse
* public
ongelimiteerd toegankelijk
* internal
= toegankelijk binnen de assembly
indien geen access modifier gebruikt wordt is dit de default

een .NET assembly komt ongeveer overeen met een Java .jar file,

.Net’s internal visibility komt ongeveer overeen met package (default)
visibility in combinatie met een sealed .jar

Als je unit testen wenst aan te maken voor een klasse, dient de klasse public
te zijn. Unit testen behoren tot een andere namespace (zie verder)

HoGent Pag. 15

1. Klassen

» Members van een klasse
o Fields (Attributen)

Constructor — destructor

Properties

Methods

Events

(0]

(@)

(0]

O

HoGent

Pag. 16

1. Klassen

» Access modifiers voor members
o public

- ongelimiteerd toegankelijk

private

(¢]

 enkel toegankelijk binnen de klasse
* dit is de default
internal

(¢]

 enkel toegankelijk binnen de assembly
protected

(¢]

* enkel toegankelijk binnen de klasse en binnen klassen die erven van
de klasse

o

Protected internal
* Letterlijk een combinatie van internal en protected

Java protected: toegankelijkheid tot klassen die erven en tot klassen binnen
HoGent dezelfde package (dit is verschillend van C# protected!) Pag. 17

1. Klassen: Members

1. Fields (Attributen) [modifier] datatype variableName
> Inkapseling van data
o Kunnen variabelen of constanten zijn
 Attributen geven we steeds private access
o Kunnen static zijn

- zijn gekoppeld aan de klasse en niet aan een instantie (object) van de
klasse, ze bestaan slechts 1 maal per klasse.

> Namingconventie: _camelCase

public class BankAccount

{

private string _accountNumber;
private decimal _balance;

;

HoGent Pag. 18

1. Klassen: Members

1. Fields (Attributen)
dit heeft geen
o Constanten equivalent in Java...
- gebruik keyword const
 een constant field moet geinitialiseerd worden bij declaratie

* nainitialisatie kan de waarde van een const nooit meer
veranderen

- een const is impliciet static:

* je gebruikt geen static bij declaratie

* je gebruikt de naam van de klasse om de constante op te vragen
Namingconventie: Start met hoofdletter

public class BankAccount

{ public static void Main(string[] args)
private string _accountNumber; {
private decimal _balance; Console.WriteLine(BankAccount.WithdrawCost);
[public const decimal WithdrawCost = 0.25M; Console.ReadKey();
Hol_.. }

rag. J.9

1. Klassen: Members

1. Fields (Attributen) equivalent in Java:

> readonly final
- gebruik keyword readonly

* aan een readonly field kan slechts 1 keer een waarde worden
toegekend

* bij declaratie of
* in constructor
* Hoeft niet in de declaratie <> CONST

public class BankAccount

{
private readonly string _accountNumber;
private decimal _balance;

;

HoGent Pag. 20

1. Klassen: Members

2. Methods [modifier] return_type MethodeName ([parameters]) { .. }

o QOperaties die een object kan uitvoeren.
o Kunnen al dan niet (void) een waarde retourneren.
o Kunnen static gedeclareerd worden.

o Bevatten parameter lijst: parameters gescheiden door een komma,
parameters hebben type en naam, gebruik () indien geen parameters.

o Method overloading: je kan meerdere methodes hebben met dezelfde
naam. Ze verschillen in aantal argumenten en/of type van argumenten.

public class BankAccount

{

private readonly string _accountNumber;

, , Voor Java programmeurs
private decimal _balance;

even wennen:
public void Deposit{decimal amount) methodenamen starten
{ met een HOOFDLETTER!

throw new NotlmplementedException();

}
HoGent ! Pag. 21

1. Klassen: Members

2. Methodes (vervolg)

o Parameters kunnen optioneel zijn (geen method overloading nodig)

* bij declaratie ken je aan een optionele parameter een defaultwaarde
toe

* voor een optionele parameter hoef je geen waarde mee te geven bij
aanroep

- optionele parameters staan als laatste in de parameterlijst
* Intellisense gebruikt [] om optionele pars aan te duiden

- voorbeeld:
- declaratie van een methode met een optionele parameter

public void ExampleMethod(int required, int optionallnt = 10)

* aanroepen van een methode met een optionele parameter
ExampleMethod(5); // optionallnt uses the defaultvalue 10

HoGent ExampleMethod(5, 8); // optionallnt uses the supplied value 8Pag.22

1. Klassen: Members

2. Methodes (vervolg)

o Optionele parameters en named arguments

* igv een optionele parameterlijst, waar bij aanroep niet alle
parameters een waarde hebben

- voorbeeld:

- declaratie van een methode met een optionele parameterlijst

public void ExampleMethod(int required, string optionalstr =
"default string", int optionalint = 10)

* aanroepen van een methode met sommige optionele parameters

ExampleMethod(5, ,3); // geeft een compilatiefout

ExampleMethod(5, optionalint : 8); // optionallInt gebruikt de

opgegeven waarde 8, optionalstr de default value “default
string”

HoGent

Pag. 23

1. Klassen: Members

2. Methodes (vervolg)
o Parameters passing kan op 3 manieren gebeuren
+ Value parameters: input parameter
 Ref parameters: input/output parameters

je moet expliciet ref vermelden bij formele en actuele parameter

Java kent enkel deze vorm

de variabele die je doorgeeft moet geinitialiseerd zijn

elke verandering aan de ref-parameter in de aangeroepen methode zal ook
doorgevoerd worden op de ref-parameter die werd doorgegeven

* Out parameters: output parameter
je moet expliciet out vermelden bij formele en actuele parameter
de variabele die je doorgeeft hoeft niet geinitialiseerd zijn
de aangeroepen methode moet een waarde geven aan de out-parameter
o voorbeeld:

public void Testl(int x) { x += 1; } int i = o;
public void Test2(ref int x) { x += 1; } Testl(i); // i heeft nu de waarde ©
public| void Test3(out int x) { x = 10; } Test2(ref i); // i heeft nu de waarde 1

Test3(out i); // i heeft nu de waarde 10

HoGent

Pag. 24

1. Klassen: Members

2. Methodes (vervolg)

o Parameters passing kan op 3 manieren gebeuren

Hoezo, in Java heb je enkel value parameters???

In Java zeggen we steeds “Objects are passed by reference”, dit betekent echter dat de
reference van het doorgegeven object als value parameter wordt doorgegeven...

public static void Demonstrate(ref BankAccount bankAccount) {
bankAccount = null;

}

myAccount iz null: False

myAccount is null: True

public static void ShowDemo() {
BankAccount myAccount = new BankAccount();

Console.WriteLine(" myAccount is null: {@©}", myAccount == null);
Demonstrate(ref myAccount);
Console.WriteLine(" myAccount is null: {@}", myAccount == null);
}
-

de reference naar het object myAccount wordt als ref parameter doorgegeven,
alles wat Demonstrate doet met de formele parameter bankAccount wordt ook op de actuale parameter

. myAccount doorgevoerd... (laat je het ref keyword weg, dan wordt 2 maal myAccount is null: False afgeprint)

1. Klassen: Members

2. Methodes (vervolg)
o Je kan ook een return type opgeven

public GetBalance() {

}

° return statement

« Kan om het even waar staan in de code van de methode en kan
meerdere malen voorkomen

* Retourneert de waarde van de methode

* Uitvoering methode wordt onmiddellijk gestopt (eventueel na
uitvoering finally bij exception handling of Dispose bij using), en
de controle wordt teruggegeven aan oproepend programma.

HoGent Pag. 26

1. Klassen: Members

3. Constructor

o Een constructor heeft steeds dezelfde naam als de klasse, en heeft
nooit een return type.

o Een klasse hoeft geen constructor te hebben. In dat geval maakt de
compiler zelf een default constructor (public naamklasse()) aan.

o Een klasse kan 1 of meerdere constructors hebben. Ze verschillen in
aantal argumenten en/of type van argumenten. In dat geval hoeft de
klasse geen default constructor te hebben en maakt de compiler ook

geen default constructor aan. Handige code snippet: ctor + tab

—> genereert constructor methode
public BankAccount(string accountNumber)

{ Klik Ctrl+K, Ctrl-X voor een overzicht van alle code
throw new NotlmplementedException(); SNIpPeEs...

public BankAccount(string accountNumber, decimal balance) : this(accountNumber)

{ A

In Java zet je dit als eerste statement in

throw new NotlmplementedException(); g bod
e constructor body

}
HoGent Pag. 27

1. Klassen: Members

3. Constructor

o Qok bij constructors kunnen default parameters opgegeven
worden. Geen overloading nodig

public BankAccount(string account, decimal balance = OM) { }l

HoGent Pag. 28

1. Klassen: Members

4. Destructor

o Kuist objecten op

o Wordt automatisch uitgevoerd voor de garbage collector een
object vrij geeft.

o Heeft geen access modifier — geen parameters en heeft
dezelfde naam als de klasse met een tilde voorafgegaan.

o Wordt zelden expliciet geschreven. Je weet ook niet wanneer
het wordt uitgevoerd. Beter om IDisposable te gebruiken.

public class BankAccount

{
o ()

{
//implementatie J
.

)

HoGent Pag. 29

1. Klassen: Members

5. Properties

o combinatie van aspecten van fields en methods
- voor de gebruiker van een klasse is een property net een field

- voor diegene die een property implementeert bestaat een
property uit 1 of 2 stukjes code die de getter en/of setter
voorstellen

HoGent

- de code voor de getter wordt uitgevoerd wanneer de property wordt

gelezen

- de code voor de setter wordt uitgevoerd als aan de property een

waarde wordt toegekend

Pag. 30

1. Klassen: Members

5. Properties

public class BankAccount * de property noemt AccountNumber,
{ de naam van een property start
private string _accountNumber; steeds met een hoofdletter!
— * het type van de property is string

public string AccountNumber

{
« dit stukje code bij get wordt

uitgevoerd wanneer de property
I wordt gelezen, bv.

et 4 return accﬂur‘ltNumber;
get { _ } - |

set { accountNumber = value; } string accountNumber =

b myBankAccount.AccountNumber;
h

& \ e dit stukje code bij set wordt

/ uitgevoerd wanneer aan de property
een waarde wordt toegekend, bv.

het type van value is het type van de property, in dit myBankAccount.AccountNumber =

voorbeeld dus string "12-456376-25";
het bevat de waarde die de gebruiker wil toekennen /

aan de property Pag. 31

=t

dit is een CH# keyword

1. Klassen: Members

5. Properties:
JAVA

CH

public class BankAccount {
private String accountNumber;
public String getAccountNumber() {
return accountNumber; }
public void setAccountNumber(String value) {

accountNumber = value; }

public class BankAccount {
private string _accountNumber;
public string AccountNumber
{
get { return _accountNumber; }

set { _accountNumber = value; }

BankAccount myBankAccount =
new BankAccount("13-455665-13");

BankAccount myBankAccount =
new BankAccount("13-455665-13");

String accountNumber =

myBankAccount.getAccountNumber();

string accountNumber =

myBankAccount.AccountNumber;

myBankAccount.setAccountNumber("12-456376-25");

myBankAccount.AccountNumber = "12-456376-25";

HoGent

1. Klassen: Members

5. Properties
o Hoeven niet steeds een get en een set te bevatten
* read-only property: heeft enkel een get.
- write-only property: heeft enkel een set
o get/set nemen per default het access level aan van de
property, maar dit kunnen we veranderen

o voorbeeld private decimal _balance;

public decimal Balance

{

/ public get: de get heeft geen
get {return _balance; } expliciete access modifier en
private set { _balance = value; } neemt het access level van de

W property over
}

private set: buiten deze klasse is het niet toegestaan de
HoGent balans rechtstreeks te wijzigen Pag. 33

1. Klassen: Members

5. Properties — automatic properties

o properties hoeven niet expliciet gebruik te maken van een
field

o er is een verkorte schrijfwijze voor properties
* de compiler maakt dan achter de schermen gebruik van een field

(o]
voorbeeld er worden geen code blokken

gedeclareerd voor get/set,

public decimal Balance { get; set; } de compiler houdt nu zelf een

private decimal field _balance bij

dit field is niet rechtstreeks
beschikbaar voor de programmeur

uitvoering van set wordt achter de uitvoering van get wordt achter de
schermen vertaald naar: schermen vertaald naar:
compiler_generated_field_for Balance = value return compiler_generated_field_for_Balance

HoGent Pag. 34

1. Klassen: Members

5. Properties
o bij automatic properties kan je ook het access level aanpassen
> voorbeeld

public decimal Balance { ge‘q; private set; } \

> handige code snippet voor automatic property: prop + tab tab
> handige shortcut om voor een field een property te maken

- selecteer field > rechtsklik > Quick Actions and Refactorings ... > Encapsulate
Field

HoGent Pag. 35

1. Klassen: Members

5. Properties
Auto-Implemented Property Initializers

Je kan ook de initiéle waarde van een property opgeven. Zo
hoef je dit niet in de constructor te doen

Voorbeeld

public decimal Balance { get; private set; {: OM;

Een read-only property heeft enkel een getter. De waarde kan
je opgeven via een auto-property initializer of in de
constructor

(0]

o

(0]

o]

public string AccountNumber { get; }

public BankAccount(string accountNumber)
{

AccountNumber = accountNumber;

HoGent ! Pag. 36

1. Klassen: Members

6. Regions

> Dienen om code te groeperen
- Een region kan je open- en dichtklappen

o Aanmaken: selecteer een stukje code selecteren > Rechtsklik >
Snippet >Surround with > Visual C# > #region of typ de code in.

o Good practice: voorzie in een klasse minstens 4 regions: Fields,
Constructors, Methods, Properties

public class Ba nk;ﬂaccountl
{
#region Fields
private string _accountNumber;

#endregion

Properties

Constructors

Methods

HoGent ' Pag. 37

1. Klassen

» Aan de slag nu...

o Implementeer de klasse

> Om een klassendiagram toe te voegen : rechtsklik folder
Domain > Add > new Item > Class Diagram.
- Selecteer BankAccount.cs in de Solution Explorer en drop het in

de editor.

* Aanpassen door Rechtsklik > Add > property,.... => de code in de
klasse wordt automatisch aangepast

| Class

4 Properties

H AccountNumber { get; } : string
'_ F Balance { get; set; } : decimal

4 Methods

il © BankAccount(string account)

¥ Deposit{decimal amount) : void
@ Withdraw({decimal amount) : void

HoGent

Pag. 38

1. Klassen

» Aan de slag nu...
o Implementeer de klasse

HoGent

namespace Banking.Models.Domain

{

class BankAccount

{

#region Properties

public decimal Balance { get; private set; }

public string AccountNumber { get; }
#endregion

#region Constructors
public BankAccount(string account)

{

AccountMumber = account;

Balance = Zero;

}

#endregion

#region Methndsl
public void Withdraw({decimal amount)

{
Balance -= amount;
1
public void Deposit(decimal amount)
{
Balance += amount;
i
#endregion

Pag. 39

1. Klassen

» Gebruik van klassen (ga naar Program.cs)

o Declaratie en instantiatie van een variabele van het type
BankAccount

public static void Main(string[] args)

{

BankAccount myAccount;
myAccount = new BankAccount("123-123123-12");

}

* Declaratie en instantiatie kan in 1 statement

BankAccount myAccount = new BankAccount("123-123123-12");

HoGent Pag, 40

1. Klassen

» Object Initializers

o Waarden toekennen aan properties
van een object, tijdens de
instantiatie van het object

o Instantiatie en initialisatie zonder object
initializer:
BankAccount myAccount =

new BankAccount("123-123123-12");
myAccount.Balance = 200M;

° analoog maar met object initializer:

BankAccount myAccount =

new BankAccount("123-123123-12") { Balance = 200M };

class BankAccount

{

#region Properties
public decimal Balance {get;lget; 1

public string AccountNumber { get; }
#endregion

#region Constructors

public BankAccount(string account)

{

AccountNumber = account;

Balance = Zero;

h

#endregion

R

Na de constructor aanroep volgt een sequentie van member initializers: tussen { } en
gescheiden door een komma. Voor de default constructor mag je de haakjes bij de aanroep

HoGent weglaten.

Pag. 41

1. Klassen

» Gebruik van klassen

o Uitvoeren van een methode
- void
myAccount.Deposit(100.0M);
* met return waarde
string accountInfo = myAccount.ToString();
o Gebruik van properties:

- de compiler bepaalt zelf wanneer get of set wordt uitgevoerd (kan afgeleid
worden uit plaats in code)

Uitvoeren get (opvragen inhoud)
string balance = myAccount.Balance.ToString();

Uitvoeren set (instellen inhoud) (enkel indien setter public)
myAccount.Balance = 100;

Beide (uitvoeren get en dan set)

myAccount.Balance += 100;

HoGent pag. 42

1. Klassen

» Gebruik van klassen

° Ga naar Program.cs en voeg onderstaande code toe
o Run de applicatie

public class Program
{
public static void Main(string[] args)
{
BankAccount account = new BankAccount("123-4567890-02");
Console.WriteLine(S"AccountNumber: {account.AccountNumber} ");
Console WriteLine(S"Balance: {account.Balance} ");
account.Deposit(200M);
Console.WriteLine(S"Balance after deposit of 200 euros: {account.Balance} ");
account.Withdraw(100M);
Console WriteLine(S"Balance after withdraw 100 euros: {account.Balance}");
Console.ReadKey();

HoGent pag. 43

1. Klassen

: O; commit “Add class BankAccount”

 Q p

» Aanmaken commit in de lokale repository
o BankAccount is aangemaakt
o We gaan dit committen in de lokale repository
o Open Team Explorer (View > Team Explorer)

Teamn Explorer - Home
(] .m i’ | C\‘ search Work [tems (Ctrl+
Home Banking

4 Project

(© Cchanges
%" Branches
T sync

$F Settings

4 Solutions
Mew... | Open...

fa] Banking.sin

HoGent Pag. 44

1. Klassen

» Aanmaken commit in de lokale repository

o Klik op Changes

HoGent

Tearn Explorer - Changes
[+ fﬁ¥|c‘ Search Work ltems (Ctrl+ @ -
Changes | Banking '|3ﬂ

Branch: master

Enter a commit message <Required>

nmit Al | = | Actions -
4 Changes (2] + -
- Chdata-karine' 2016201 7Webl [\ Banking\s...
4 Models

C* Bankf&ccount.cs [add]

C# Program.cs

Pag. 45

1. Klassen

» Aanmaken commit in de lokale repository
o Alvorens je commit, inspecteer je de code (code review)
o Open BankAccount.cs

* Overloop de code

 Bekijk nog eens de warnings en messages en pas code cleanup

toe
I.Jsing System;

- namespace Banking.Models.Domain

{

=. class BankAccount
* Properties

+ Constructors
+ Methods

i
i

HOGent @ No issues found > Pag. 46

1. Klassen

» Aanmaken commit in de lokale repository
o Alvorens je commit, inspecteer de code

o Open Program.cs
Team Explorer toont de verschillen. Overloop deze

Code cleanup

BankAccount.cs™
Program.cs;HEAD

[&#] Miscellanecus

1
2
3
i

5
6
7
8
9
10
11

Program.cs®

Files - | #2 Banking.Program ~|@ Main
using System;

using System.Collections.Generic;

(string(] args) -

using System.Ling;
using System.Threading.Tasks;

VIS

namespace Banking

{

public class Program

{

publlc static void Main(string[] args)

o’
7

7

7

\\\\\\\\

Program.cs

[#] Banking..NETCoreApp, Versio

1
2
3

O~ v L1 &

o

10
11
12
13
14
15
16
17
18
19

Diff - Program.cs;HEAD vs. Program.cs™ a X -

~ | # Banking.Program 1@ Main

using System;
te

usi'“g System.Collections.Generic;

usin tem.Ling;

usin \.-v-sfbr“_ reading.Tasks;

hsmg Banking.Models;

namespace Banking

{
public class Program
{
public static void Main(string[] args)
{
BankAccount account = new BankAccount(
Console WriteLine($"AccountNumber: {acc
Console WriteLine(S"Balance: {account.Bal:
account.Deposit(200M);
Console WriteLine($"Balance after deposit
account.Withdraw(100M);

(string(] args)

&

-

Console WriteLine($"Balance after withdrar _

=

HoGer

Pag. 47

1. Klassen

» Aanmaken commit in de lokale repository
o Vul de commit boodschap in en klik Commit All

HoGent

Team Explorer - Changes v = X
BRI BN P
Changes | Banking Mkl
Branch: master
Add class BankAccount
Commit All |+ Actions -
+ -

4 Changes (2)
4 Chdata-karine'2016201 \WeblIhLes3\BankingsrchBanking
4 Models
C* Bankfccount.cs [add]

C* Program.cs

Pag. 48

1. Klassen

» Aanmaken commit in de lokale repository
o 7 REGELS VOOR EEN GOEDE COMMIT MESSAGE

- 1.
. Beperk de lengte van het onderwerp tot 50 karakters

N O O B W N

Hou onderwerp en body gescheiden met 1 witregel

. Het onderwerp begint met een hoofdletter

. Gebruik geen punt op het einde van het onderwerp

. Gebruik de gebiedende wijs in het onderwerp

. Beperk de breedte van de body tot 72 karakters

. Geef in je body een uitleg voor wat en waarom, niet over hoe

* Meer op: http://chris.beams.io/posts/git-commit/

HoGent

Pag. 49

http://chris.beams.io/posts/git-commit/

1. Klassen

» Eventueel pushen commit naar Remote Repository
o Klik op Home @

Home | Banking ¥

4 Project

|® Changes |v Branches
|T¢ Sync |{ar Settings

o Kies Sync. Hier kan je publiceren naar een Remote Repository

4 Publish to Remote Repository

There is no remote configured for this local repository. Establish the remote
by publishing to the URL of an existing empty repository.

Publish Git Repo

HoGent Pag. 50

Associaties en Collections

HoGent

2. Associaties

» Klasse Transaction : immutable klasse
o Bijhouden van verrichtingen

| BankAccount A | Transaction A
Class Class
4 Properties 4 Properties

B AccountNumber { get; } : string & Amount { get; } : decimal

@ transactions : IList<Transaction >

J Balance { get; set; } : decimal L .) & DateOfTrans { get; } : DateTime
J NumberOfTransactions { get; } : int & IsDeposit { get; } : bool
4 Methods & lsWithdraw { get; } : bool
% BankAccount(string account) F TransactionType { get; } : TransactionType
© Deposit(decimal amount) : void 4 Methods
7 GetTransactions{DateTime? from, DateTime? till) ; IEnumerable<Transaction = P Transaction(decimal amount, TransactionType type)
2 Withdraw(decimal amount) : void ~ !
TransactionType
Enum
Deposit
Withdraw

HoGent Pag. 52

2. Associaties

» Maak de Enumeratie aan

o Rechtsklik Domain folder > Add > new Item > Class. Naam
TransactionType.cs

namespace Banking.Models.Domain

{

public enum TransactionType
{
Deposit,
Withdraw
}
}

o Verwijder “unused” using statements

HoGent Pag. 53

2. Associaties

» Maak de klasse Transaction aan
o Maak zelf de klasse Transaction aan

o Maak van Amount, DateOfTrans,TransactionType
o Maak van IsDeposit en IsWithdraw read only properties

o Implementeer de klasse Transaction

HoGent

' Transaction A |

Class

4 Properties

Yevrerh®

Amount { get; } : decimal

DateOfTrans { get; } : DateTime

IsDeposit { get; } : bool

IsWithdraw { get; } : bool
TransactionType { get; } : TransactionType

4 Methods

&

Transaction{decimal amount, TransactionType type)

Pag. 54

2. Associaties

» Implementatie
o Alle props zijn readonly => immutable

class Transaction
{
#region Properties
public DateTime DateOfTrans { get; }
public TransactionType TransactionType { get; }
public decimal Amount { get; }

#endregion

#region Constructors
public Transaction{decimal amount, TransactionType type)

{

Amount = amount;

TransactionType = type;
DateQfTrans = DateTime.Now;I

h

#endregion

HoGent

Pag. 55

2. Associaties

» Implementatie (vervolg)

HoGent

#region Methods
public bool IsWithdraw

{

get { return TransactionType == TransactionType Withdraw; }

i

public bool IsDeposit

{

get { return TransactionType == TransactionType.Deposit; }

1

#endregion

Als je get selecteert, dan verschijnt het lampje. We kunnen
hiervoor gebruik maken van expression bodies. Zie volgend
hoofdstuk.

Pag. 56

2. Associaties - Collections

» Om de transactions bij te houden maken we gebruik van
Collections

» Namespace: System.Collections.Generic

» Een generische collection is strongly typed (type safe): dit
betekent dat het maar 1 type van object kan bevatten

» Collections worden ook

Object

generics genoemd in .Net 7S
|Enumberable
T
ICollection
| T |
) Meer Op IDictionary ‘ ‘ IList

http://msdn.microsoft.com/en-us/library/0sbxh9x2.aspx

HoGent Pag. 57

http://msdn.microsoft.com/en-us/library/0sbxh9x2.aspx

2. Associaties - Collections

» Collection Interfaces
° interfaces laten je toe om loosely coupled, testable code te
schrijven

- methodes geven liever collecties terug via een interface dan via
een concreet type

o we gaan even kijken hoe collecties in C# georganiseerd zijn

- als je de interfaces begrijpt ga je de collections zelf beter
begrijpen en gebruiken

HoGent Pag. 58

2. Associaties - Collections

» Collection Interfaces

L IEnumerable

|

IReadOnlyList<Ts | |

IReadOnlyDictionary

. <TKey, Tvalue>

HoGent

Pag. 59

2. Associaties - Collections

|l TEnumerahle<ty IEnumerable<T>:

| 0— “You can iterate my elements”

» [IEnumerable<T>

o meest belangrijke interface, zegt dat we over de elementen
kunnen itereren

o biedt een enumerator aan om door een collectie te lopen.
- dit betekent dat je de collectie kunt doorlopen met een foreach

I[Enumerable Interface

MET Framework 4.6 and 4.5 Other Versions - ‘

Methods

Mame Description

W | GetEnumerator() | Returns an enumerator that iterates through a collection,

(slechts 1 methode in
deze interface!

HoGent Pag. 60

2. Associaties - Collections

» IEnumerable<T>

TEnumerable<string> daysOfWeek = new List<string>

{
"Monday", "Tuesday", "Wednesday","Thursday”,"Friday"”, "Saturday"”, "Sunday™

};

foreach (string day in daysOfleek)
Console.WritelLine(day);

| Merk op: List<string> is de
concrete implementatie.
Merk op: We maken hier
gebruik van een collection
initializer.

o Merk op: T is een generic type parameter die je bij definitie
van een collectie moet opgeven.

HoGent Pag. 61

2. Associaties - Collections

ICollection<Ty

.—

» ICollection<T>

ICollectiongT):

2, ; Sy s o 5 rrias
‘NOW hOW many eler

o implementeert [IEnumerable<T>
o extra properties en methodes laten toe om de grootte van de

collectie op te vragen en de collectie te manipuleren

Properties

Mame

Description

iy Gets the number of elements contained in the |Collection<T=.

% | IsReadOnly | Gets a value indicating whether the ICollection<T> is read-only.

IEnumerable<T>

o—

ICollection<T>

—

HoGent

Pag. 62

2. Associaties - Collections

» ICollection<T>

Methods
Name Description
¥ |[Add(T) Adds an item to the [Collection<T=.
W || Clear() Femowves all items from the [Collection<T=.
¥ | Contains(T) Determines whether the ICollection<T= contains a speafic value.
¥ | CopyTo(T Copies the elements of the ICollection<T> to an Array, starting at a particular Array
[, Int32) index,

¥ | GetEnumerator() Returns an enumerator that iterates through the collection.(Inherited from
IEnumerable<T=.)

Removes the first occurrence of a specific object from the I1Collection<T=.

HoGent Pag. 63

2. Associaties - Collections

» ICollection<T>
o voorbeeld: Count, Add, Remove Contains...

ICollection<string> daysOfWeek = new List<string»> {

1} LL m m

"Monday™, "Tuesday", "Wednesday","Thursday"”,"Friday"”, "Saturday"”, "Sunday”

Console.WriteLine("There are {@} days in daysOflWeek”™, daysOflWeek.Count);

daysOfleek.Remove("Saturday");

daysOfWeek.Remove("Sunday™);

daysOflWeek.Add("Weekend-day");

Console.WriteLine("After manipulating the collection it contains {@} days:", daysOfWeek.Count);
foreach (string day in daysOfleek)
Console.Writeline(day);

Console.WritelLine("daysOfWeek contains Sunday: {0}", daysOfWeek.Contains("Sunday"));

There are 7 days in days0fieek

After manipulating the collection it contains 6 days:
Monday

Tuesday

llednesday

Thursday

Friday

Weekend—day

dayz0flleek contains Sunday: False

HoGent Pag. 64

2. Associaties - Collections

> | SR ‘O— l
(— “You can look up my elements with an index” r

» IList<T>
o implementeert ICollection<T> o—
° index gebaseerde toegang tot de elementen van de collectie
* 0-based indexing
 gebruik rechte haakjes: [index]
o enkele methodes:

- een element aan de collectie toe te voegen op een specifieke
plaats: Insert

- een element uit de collectie weghalen van een specifieke plaats:
RemoveAt

- de plaats van een element in de collectie te bepalen: IndexOf
HoGent

Pag. 65

2. Associaties - Collections

» IList<T>

Methods
Mame Description
‘9 | Add(Dbject) Adds an item to the IList.
‘g | Clear() Remowes all items from the IList.

‘¢ | Contains{Object) Determines whether the IList contains a specific value.

| CopyTo Copies the elements of the ICollection to an Array, starting at a particular Array index.
[Array, Int32) (Inherited from [Collection.)

9 | GetEnumerator) Returns an enumerator that iterates through a collection.Inherited from I[Enumerable.)

@ | IndexOfObject) Determines the index of a specific item in the [List.

‘@ | Insert Inserts an item to the IList at the specified index.
Int32, Object)

9 | Remove(Ohject) Remowves the first occurrence of a specific object from the IList,

‘@ | Removeht{int32) Remowes the |List itermn at the specified index.

HoGent Pag. 66

2. Associaties - Collections

» IList<T>
o voorbeeld: gebruik index, Insert, RemoveAt, IndexOf, ...

TList<string> daysOfleek = new List<string> {
"Monday™, "Tuesday", "Wednesday","Thursday”,"Friday"”, "Saturday", "Sunday™
¥
Console.Writeline("The first day is {©8}", daysOfWeek[8]);
daysOflleek[@] "Difficult davy";
daysOflWeek[4] = "Happy day";
daysOflWeek.RemoveAt(6);
daysOfleek.RemoveAt(5);
daysOflWeek.Insert(5, "Weekend-day");
foreach (string day in daysOfWeek)
Console.WritelLine(day);
Console.WritelLine("Tuesday is day {@}", daysOfWeek.IndexOf("Tuesday"));

Tuesday i=s day 1

HoGent Pag. 67

2. Associaties

» Klasse BankAccount

o Voorzie in de klasse BankAccount een generische lijst van
transacties. Initialisatie kan bij declaratie of in de constructor

using System;

using System.Collections.Generic; 1

namespace Banking.Models.Domain

{

class BankAccount

{

#region Fields

‘ private readonly IList<Transaction> transactions = new List<Transaction>(); ’

#endregion

public BankAccount(string account)

{

AccountNumber = account;

Balance = Zero;
_transactions = new List<Transaction>();

HOGent } Pag. 68

2. Associaties

» Klasse BankAccount
o Voeg extra properties en methodes toe

NumberOftransactions
is een read-only
property

public int NumberOfTransactions

{

get { return|_tra nsa{:tiﬂns.{:ounq; }

}

public IEnumerable<Transaction> GetTransach’on%{DateT]me? from, DateTime? tiII‘)J

{
if (from == null && till == null) return _transactions;
if (from is null) from = DateTime.MinValue;
if (Itill.HasValue) till = DateTime.MaxValue; Nullable types: zie

hoofdstuk 2

IList<Transaction> transList = new List<Transaction>();
foreach (Transaction tin _transactions)
{
if (t.DateOfTrans >= from && t.DateOfTrans <= till)
transList.Add(t);
}

return transList;

HoGel } Pag. 69

2. Associaties

o De methodes Withdraw en Deposit

public void Withdraw({decimal amount)

{
_transactions.Add({new Transaction{amount, TransactionType Withdraw)); 1
= mt;

1

public void Deposit(decimal amount)

% _transactions.Add({new Transaction[amount, TransactionType.Deposit)); l

Balance += amount;

h

HoGent Pag. 70

2. Associaties

o Pas Program.cs aan (later zien we unit testen)

static void Main(string[] args)

{
BankAccount account = new BankAccount("123-4567890-02");
Console.WriteLine(S"AccountNumber: {account.AccountNumber} ");
Console.WriteLine(S"Balance: {account.Balance} ");
account.Deposit(200M, "My first deposit");
Console.WriteLine(S"Balance after deposit of 200 euros: {account.Balance}");
account.Withdraw(100);
Console.WriteLine(S"Balance after withdraw of 100 euros: {account.Balance} ");
Console.WriteLine(S"Number of transactions: {account.NumberOfTransactions}");
IEnumerable<Transaction> transactions = account.GetTransactions(null, null);

foreach (Transaction t in transactions)
Console.WriteLine(S"Transaction: {t.DateOfTrans} - {t. Amount} - {t.TransactionType} - {t.Notes ?? "/"}");

HoGent Pag. 71

2. Associaties

(Associaties)”

0 commit “Add class Transaction

» Commit
o Voer code review uit
o Commit boodschap: Add class Transaction

o Klik eens op link Actions > View History. Zo kan je de detail van
elke commit bekijken.

* Actions

| 4 Changes Open in File Explorer

Open Cormnmand Prormpt
45 View History.—.

3= ENCI

Graph 1D Author Date Message

4 Local History

5223499c Karine Samyn 10-Sep-19 20:41:42 Add class Transaction
65f560% Karine Samyn 10-5Sep-19 18:13:00 Add class BankAccount

5chd7ed4e Karine Samyn 10-Sep-19 15:04:42 Add project files.
3b001350 Karine Samyn 10-5ep-19 15:04:39 Add .gitignore and .gitattributes.

HoGent Pag. 72

Overerving

HoGent

3. Overerving

» Overerving is een mechanisme waarbij software
opnieuw wordt gebruikt: nieuwe klassen worden
gecreéerd vertrekkende van bestaande klassen
> De superklasse bevat de gemeenschappelijke attributen,
operaties en associaties

> De subklasse erft alles van de superklasse: attributen,
operaties, associaties

> |n een subklasse wordt het gedrag van de superklasse
uitgebreid en/of gespecialiseerd

- Het gedrag van de subklasse kan verder gespecialiseerd worden
door methoden van de superklasse te overriden (herdefiniéren) in
de subklasse.

o De subklasse heeft een ‘is een’ relatie met de superklasse

HoGent Pag. 74

3. Overerving

o Maak klasse SavingsAccount aan.

| BankAccount
Class

4 Properties

F AccountNumber { get; } : string

F Balance { get; set; } : decimal

& NumberOfTransactions { get; } : int
4 Methods

&

BankAccount(string account)
Deposit{decimal amount) : void

@ a a

Withdraw(decimal amount) : void

GetTransactions{DateTime? from, DateTime? till) : IEnumerable<Transaction >

(SavingsAccount
Class
= BankAccount

4 Fields

@* WithdrawCost : decimal
4 Properties

}’* InterestRate { get; } : decimal
4 Methods

@ AddInterest() : void

P SavingsAccount(string bankAccountMumber, decimal interestRate)
@ Withdraw(decimal amount) : void

HoGent

OG

_transactions: IList<Transaction>

>

| Transaction
Class

4 Properties

& Amount{ get;}: decimal

K DateOfTrans { get; } : DateTime

K IsDeposit { get; } : bool

K IsWithdraw { get; } : bool

& TransactionType { get; } : TransactionType
4 Methods

P Transaction({decimal amount, TransactionType type)

TransactionType 4
Enum

Deposit
Withdraw

Pag. 75

3. Overerving

» Definitie superklasse

public class BankAccount

o Opmerking: indien van een klasse niet mag worden afgeleid
kan je de klasse verzegelen

public sealed class BankAccount

Het equivalent in Java is een final class

HoGent Pag. 76

3. Overerving

2 Def|n|t|e Subklasse de: operator wordt in Java extends

public class SavingsAccount: BankAccount

o Bij een subklasse hoort steeds één superklasse. Net zoals Java
laat .Net laat geen multiple inheritance toe. Een klasse kan
wel meerdere interfaces implementeren

o Access

* De private members (attributen/methoden) van de superklasse
zijn niet toegankelijk vanuit de subklasse.

- De protected members uit de superklasse, zijn enkel toegankelijk
in de subklassen, niet voor de buitenwereld.

In Java laat je met protected access ook toegang vanuit andere
klassen binnen dezelfde package toe...

F*()(5E3f1t Pag. 77

3. Overerving

» Constructors

o

Constructoren van de superklasse worden niet overgeérfd
door de subklassen.

Als de subklasse geen constructor bevat, maakt de compiler
zelf een default constructor aan, die automatisch de
constructor van de superklasse oproept.

* Als de superklasse dan geen default constructor bevat krijg je een
compiler fout

Keyword “base”: aanroepen methode/constructor uit
superklasse

base komt overeen met Java super

Keyword “this”: refereren naar de huidige instantie

HoGent Pag. 78

The decimal suffixis M/m since D/d was already taken by double _ Although it has been
suggested that M stands for money, Peter Golde recalls that M was chosen simply as the next best

3 o OVe re rvi letter in decimal .

B & /
(o]
Voorbeeld SavingsAccount erft van de superklasse
class SavingsAccount : BankAccount <
{ BankAccount
#iregion Fields
protected const decimal WithdrawCost = 0.25M;| < Enkel SavingsAccount en
#endregion klassen die erven van
SavingAccount hebben
#region Properties toegang tot WithdrawCost
public decimal InterestRate { get; }
#endregion
firegion Constructors base: aanroepen constructor uit
public SavingsAccount(string bankAccountNumber, decimal interestRate) superklasse voor initialisatie
{ : base(bankAccountNumber) < members van superklasse
InterestRate = interestRate;
}
#endregion

Voorbeeld oproepen constructor van eigen klasse:

public SavingsAccount(string bankAccountNumber, decimal interestRate, bool
goldMember): this(bankAccountNumber, interestRate)

HoGent Pag. 79

3. Overerving

» Methodes: nieuwe methode toevoegen

public class SavingsAccount: BankAccount {

protected const decimal WithdrawCost = 0.25M; Extra constant field

public decimal InterestRate { get; } Extra property

public SavingsAccount(string bankAccountNumber, decimal interestRate)
: base(bankAccountNumber) {

InterestRate = interestRate;

public void AddInterest() {

Deposit(Balance * InterestRate); Extra methode

}
HoGent

Pag. 80

3. Overerving

» Methodes - overriding

o Standaard kan je een methode niet overschrijven in een
subklasse

o voorbeeld: de methode WithDraw in BankAccount kan je niet
overschrijven in de subklasse SavingsAccount

public }\/oid Withdraw(decimal amount)
{

_transactions.Add(new Transaction(amount, TransactionType.Withdraw));
Balance -= amount;

}

in Java zou dit wel kunnen...

HoGent Pag. 81

3. Overerving

» Methodes - overriding

> |Indien je een methode wil override-n moet je in de
superklasse gebruik maken van het keyword virtual

* Via dynamic binding wordt dan de juiste versie van de methode
uitgevoerd

public(virtualvoid Withdraw(decimal amount)
{

_transactions.Add(new Transaction{amount, TransactionType Withdraw));
Balange -= amount;

Maakt het mogelijk de methode
Withdraw te override-n in een
subklasse van BankAccount

HoGent Pag. 82

3. Overerving

» Methodes - overriding

public class BankAccount {

Balance -= amount;

public void Withdraw(decimal amount) {

public class SavingsAccount: BankAccount {

base.Withdraw(amount);
base.Withdraw(WithdrawCost);

HoGent

public override void Withdraw(decimal amount) {

Deze Withdraw override de
Withdraw uit bankAccount.

VOOr Java programmeurs even wennen:
virtual en override moeten expliciet
aangegeven worden in de code!

Pag. 83

3. Overerving

» voorbeeld: Instantie aanmaken van de subklasse
o Pas program.cs aan

SavingsAccount saving = new SavingsAccount("123-4567891-03", 0.01M);
saving.Deposit(200M);
saving.Withdraw(100M);
saving.AddInterest();

I
Methode uit de subklasse zal
worden aangeroepen

Console WriteLine($"Balance savingsaccount: {saving.Balance}"); r

HoGent Pag. 84

3. Overerving

» Time to commit

* Inspecteer de code
* Commit

HoGent

, commit “Add class SavingsAccount”

Pag. 85

3. Overerving

» Klasse Object

o Elke klasse is afgeleid van System.Object
o Deze bevat 3 overridable methodes

 ToString(), die geeft als standaardgedrag de naam van de klasse weer.

 Equals(), standaardgedrag: 2 reference variabelen zijn gelijk als ze wijzen

naar hetzelfde object, 2 value type variabelen zijn gelijk als ze dezelfde
waarde bevatten

- GetHashCode(), gebruikt in hash-based collections: Dictionary<TKey,
TValue> , Hashtable of type afgeleid van DictionaryBase.

o Bevat statische methodes

- ReferenceEqual(objA, objB): test of 2 variabelen wijzen naar hetzelfde
object, of beide null zijn.
* Object.ReferenceEqual(o1,02)
* Equals(objA, objB): checkt op ReferenceEqual, indien niet gelijk
retourneert het het resultaat objA.Equals(objB)
* Object.Equals(o1,02)

HoGent

Pag. 86

3. Overerving

» Klasse Object
o Pas klasse BankAccount

public overri‘de‘s:&ing ToString()
{

return S"{AccountNumber} - {Balance}";

}

public override bool Equals(object obj)

{

//BankAccount account = obj as BankAccount;
//if (account == null) return false;l

// using the is operator with pattern matching:
if (!(obj is BankAccount account)) return false;
return AccountNumber == account.AccountNumber;

}

public override int GetHashCode()
{

return AccountNumber?.GetHashCode() ?? O;

}

HoGent

» ?:, ternary conditional operator
o verkorte schrijfwijze if then else

return (a==b)? c:d;
» ??, null-coalescing operator

o retourneert de linkerkant van de
operand als niet null, anders de
rechterkant.

int? x = null;
/f Set y to the value of x if x is NOT null; otherwise,

[/ if x = null, set y to -1.
int y = x 27 -1;

» ?., null conditional operator

o Test op null alvorens een member
access te doen

int? length = customers?.Length; // null if customers is null

Customer first = customers?[0]; // null if customers is null

Pag. 87

3. Overerving

» Klasse Object
o Pas Program.cs aan

BankAccount savingsAccount = new SavingsAccount("123-4567890-02", 0.05M);
[Console WriteLine(S"SavingsAccount : {savingsAccount)

savingsAccount.Deposit(200M);

savingsAccount.Withdraw(100M);

Console.WriteLine($"Balance savingsaccount: {savingsAccount.Balance} ");

Console.ReadKey();

* ToString() mag je achterwege laten

—_— - - TR TR — e e e g e e ey ——— f—— -

Console WriteLine($"SavingsAccount : {savingsAccount}");

HoGent Pag. 88

3. Overerving

» Time to commit

methods from Object”

/ commit “Implement overridable

* Inspecteer de code
* Commit

HoGent Pag. 89

Polymorfisme

HoGent

4. Polymorfisme

» Polymorfisme kan optreden als men overerving
gebruikt. Zo kan men objecten van een superklasse en
1 of meerder subklassen van die klasse opslaan in een
collection die bestaat uit objecten van de superklasse.

» Er kan ook op een polymorfe manier een object
methode aangeroepen worden. Hier wordt dan aan de
hand van het type overervende klasse gekozen welke
methode er moet worden uitgevoerd. Voorwaarde: de
methode moet gedefinieerd zijn in de superklasse.

» Het type van een object bepalen kan via de is operator

BankAccount s = new SavingsAccount("13-455665-13“, 0.10M);

if Ks is SavingsAccountﬂ {....}

HoGent Pag. 91

4. Polymorfisme

o Voorbeeld

BankAccount[] accounts = new BankAccount[3];

accounts[@] = new BankAccount("13-455665-13");
accounts[1] = new SavingsAccount("13-455665-13", ©.05M);
accounts[2] = new SavingsAccount("13-455665-14", 0.03M);

foreach (BankAccount a in accounts)

{
a.Withdraw(10M);
}
afhankelijk van het type wordt de Withdraw methode uit de superklasse
BankAccount, of de Withdraw methode uit de subklasse SavingAccount
aangeroepen
HoGent

Pag. 92

Abstracte klassen

HoGent

5. Abstracte klasse

» Een klasse met 1 of meerdere abstracte methodes
(methodes zonder een implementatie) is een abstracte
klasse.

o Een abstracte klasse kan zowel abstracte als normale members
bevatten.

» Van een abstracte klasse kunnen geen instanties worden
aangemaakt. Je moet klassen hebben die overerven van
deze klasse om ze te kunnen gebruiken.

» De declaratie van een abstracte klasse bevat het keyword
abstract.

» Elke afgeleide klasse van een abstracte klasse moet alle
abstracte members van de abstracte klasse implementeren
door gebruik te maken van de override keyword, tenzij de
afgeleide klasse zelf abstract is.

HoGent Pag. 94

5. Abstracte klasse

» Voorbeeld

public‘abstract’class BankAccount {

public virtual void Withdraw(decimal amount) {..}

public‘abstract‘string PrintAccount();

}
BankAccount is nu een abstracte elke concrete subklasse van
klasse en kan niet geinstantieerd BankAccount zal PrintAccount
worden override-n
HoGent

Pag. 95

5. Abstracte klasse

» Voorbeeld
o Maak de klasse BankAccount abstract

public abstract class BankAccount { .. }

o Voeg een abstracte methode toe in BankAccount

public abstract string Print();

o Implementeer de methode in SavingsAccount
public override string Print() {

return $"Savingsaccount balance = {Balance}";

o Merk op: de code compileert nu niet meer. Waarom?
o Verwijder de toegevoegde code terug

HoGent Pag. 96

Interfaces

HoGent

6. Interface

» Bij wijze van voorbeeld maken we een IBankAccount

interface aan.
o Open de klasse BankAccount in het code venster. Rechtsklik >

Quick Actions > Extract interface

HoGent

Extract Interface

Mew interface name:

IBankAcccuunﬂ

Generated name:
Banking.Models.|BankAccount

Mew file name:
|BankAccount.cs

Select public members to form interface

Jo Lecounthumber

JoBalance

& Deposit(decimal]

[] ¢ Egualsiobject)

[] & GetHashCodef

) GetTransactions(DateTime?, DateTime?)

F RN ET o LI .

Select All
Deselect All

| | Cancel

Pag. 98

6. Interface

» Bij wijze van voorbeeld maken we een IBankAccount

interface aan.
> The code in the interface

interface IBankAccount

{

string AccountNumber { get; }
decimal Balance { get; }
int NumberOfTransactions { get; }

void Deposit(decimal amount);
IEnumerable<Transaction> GetTransactions(DateTime? from, DateTime? till);

void Withdraw(decimal amount);

merk op: de private setters zouden geen deel uitmaken van de
geéxtraheerde interface, alles in een interface is publiek

toegankelijk
HoGent pag. 99

6. Interface

» In C# 8.0

> Je kan nu ook members toevoegen aan interfaces met een
default implementatie. Zo kunnen API-ontwikkelaars
methoden toevoegen aan een interface in latere versies
zonder de bron- of binaire compatibiliteit met bestaande
implementaties van die interface te verbreken. Bestaande
implementaties nemen de standaardimplementatie over.

> Voorbeeld op https://docs.microsoft.com/en-

us/dotnet/csharp/tutorials/default-interface-members-
versions

HoGent

Pag. 100

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/default-interface-members-versions

6. Interface

» Time to commit

, commit “Add interface IBankAccount”

* Inspecteer de code
* Commit

HoGent Pag. 101

Static members

HoGent

7. Statische members

» Informatie eigen aan de klasse, maar niet double result;
aan een bepaalde instantie van die klasse result = Math.Cos(45);

. . C# gebruikt de: operator
4 Gebru I k keyWO rd Statlc' voor zowel overerving als

o Voorbeeld static field nrOfAccounts voor het implemeneteren

van een interface, in Java
public class SavingsAccount: BankAccount { gebruik je hier

implements
public int nrOfAccounts;

int total = SavingsAccount.nrOfAccounts;

\ Merk op: klassenaam ipv

instance naam!

» Static members zijn altijd toegankelijk,
ook al zijn er geen instanties van de klasse aangemaakt.

HOGEFIt Pag. 103

7. Statische members

» Static fields worden apart in het geheugen

bijgehouden en worden gedeeld door alle instanties
van die klasse.

class D r’f Heap I
o . statics: class D .
1:tti:em:;* — The static members of a
SR v e Memd: 45 a4 class are stored saparatehy
| " from the instance mambers,
static void Main() dl ' T, d2
: ‘Memz , ‘Memz -
pdl =mewonmf); | | [frEmmsmmeees 0 fresssecesas
D dZ = mew D(); Meml: 10 Meml: 28
y . J

Static field Men? s shared by all the instances of class D,
wheraas aach instanca has its own coapy of instance fiekd Meml.

HoGent Pag. 104

7. Statische members

» Een klasse kan ook static gemaakt worden
o voorbeeld de static class Math

double result;

result = Math.Cos(45);

» Statische klassen
> hebben enkel static members
o kunnen niet geinstantieerd worden
o zijn sealed (geen overerving mogelijk)

HoGent

Pag. 105

Github

HoGent

Github

» De code staat op github
https //github.com/Weblll/03thModelEnUnitTesten

o Je kan een clone aanmaken vanuit Visual Studio

° @Ga naar Team Explorer, klik op het stekker icoon ¥ (Manage
connections)

o Klap “Local Git Repositories” open en klik op Clone

o Kopieer de URL vanuit github (Klik daar op Clone or download, en
dan op het icoon Copy to clipboard))

Create new file Upload files | Find File

Clone with HTTPS & Use S5H

ith Use Git or checkout with SV¥N using the web URL.
with t...

https://github.com/WebIII/@3thModelEnUni @.
with t...

Open in Desktop Download ZIP

TSy

° Meer op

https://blogs.msdn.microsoft.com/visualstudioalm/2013/02/06/cre
ate-connect-and-publish-using-visual-studio-with-git/

HoGent

Pag. 107

https://blogs.msdn.microsoft.com/visualstudioalm/2013/02/06/create-connect-and-publish-using-visual-studio-with-git/

Github

o Paste de URL in VS, geef ook de target folder op

4 Local Git Repositories (4)
New v| Add v| Clone v| View Options

https://github.com/
Weblll/03thModelEnUnitTesten.git

Chtemp\03thModelEnUnitTesten
Recursively Clone Submodules

Clone Cancel

> De repository wordt toegevoegd. Dubbelklikken op de
repository toont de solution. Dubbelklik de solution om deze

te openen o ——— T
[EERAR BN p

Home | Banking? v

4 Project

|(l'_-) Changes
|'V' Branches
|1~¢ Sync

|{s} Settings

4 Solutions

Mew... | Open...
HOGent jral Banki:g.sln Pag 108

Github

» Wens je de code van een bepaalde commit te bekijken

o In Team Explorer > Klik op Changes > Klik op Actions en
selecteer View History

Tearn Explores - Chareges
-] i] 2
Changes: | Bark JE

L}

Cipem in Fil Exploner |
Opam Command Brompt

5 Viesw iy,

History - master = X .ccount.b5bef
&= % M ||V RS = Filter History P
Graph D Author Date Message
4 Local History
7cd3818e Stefaan Samyn 02-Oct-18 120903 Add unit tests for Transaction, SavingsAccount and BankAccount with transactions L master ||

f068dbe3 Stefaan Samyn 02-Oct-1811:50:23 Complete unit tests for BankAccount
930510c@ Stefaan Samyn 02-Oct-1811:37:52 Add some basic unit tests for BankAccount
bf(debde Stefaan Samyn 02-Oct-1811:28:13 Add unit test project Banking.Tests to solution
1b29d4ad Stefaan Samyn 02-Oct-1811:24:09 Add interface IBankAccount
cf7ach3? Stefaan Samyn 02-Oct-18 11:1&21 Implement overridable methods from Object
Stefaan Sarmyn 02-Oct-1811:01:40 Add class SawingsAccount
Stefaan Samyn 02- 14 Add class Transaction

7c437997 Stefaan Samyn 02-Oct-18 10:50:43 Add class BankAccount

9198d2a% Stefaan Samyn 02-Oct-18 10:42:06 Add project files.
[ac383e3f Stefaan Samyn 02-Oct-18 10:42:02 Add .gitignore and .gitattributes.

HoGent Pag. 109

Github

» Wens je een bepaalde commit te bekijken
o Dubbelklik op een commit, toont de changes.

o Rechtsklik op Commit > New Branch laat toe om een nieuwe branch aan te
maken. Zo bekom je de code na deze commit en kan je hierin zelf verder
werken.

* Wens je vanaf commit 1 terug zelf de code in te geven (de stappen op de
volgende slides te volgen): rechtsklik deze commit > new branch. Geef naam in
(mag geen spaties bevatten) en vink checkout branch aan (zo schakel je

onmiddellijk over naar deze branch)
UnitTest]

53f33854
Checkout branch

Create Branch Cancel
* Nu werk je in deze branch (de code die in de solution zichtbaar 1s)

 Switchen van branch (bvb terug naar de master): Team Explorer > Branches >
dubbelklik op de branch. Je kan alleen switchen van branchals alle wijzigingen
gecommit zijn. Je kan ze ook stashen (aan de kant zetten voor later gebruik)

* Meer over branches: https://msdn.microsoft.com/en-us/library/jj190809.aspx

* Meer over git : https://www.git-tower.com/learn/git/ebook/en/command-
HOGentline/basics/basic—workflow#start

Pag. 110

https://msdn.microsoft.com/en-us/library/jj190809.aspx
https://www.git-tower.com/learn/git/ebook/en/command-line/basics/basic-workflow#start

Unit Testen

“Extraordinary products
are merely side effects of
good habits.”

HoGent

10. Unit testen

» Test Driven Development
» Aanmaken van test bibliotheek

» Aanmaken van unit test
Stappenplan

De 3 AAA’s

Klasse Assert

Testen op exceptions

» Aanmaken van unit testen voor domein Banking

(0]

(@)

(0]

O

» Aanvullingen
» Tips
» Test List

HoGent Pag. 113

10. Unit testen

Having a suite Df[automated tests]is one of the best ways to ensure a software application does
what its authors intended it to do. There are many different kinds of tests for software applications,
including integration tests, web tests, load tests, and many others. At the lowest level are unit
tests, which test individual software components or methods. Unit tests should only test code
within the developer’s control, and should not test infrastructure concerns, like databases, file
systems, or network resources. Unit tests may be written ‘Jsing Test Driven Development (TDD),
they l:an be added to existing code to confirm its cmrrectness.| In either case, they should be small,
well-named, and fast, since ideally you will want to be able to run hundreds of them before

or

pushing your changes into the project’s shared code repository.

https://docs.asp.net/en/latest/testing/unit-
testing.html

HoGent Pag. 114

10. Unit testen

» Wanneer unit testen schrijven?

Test-First Qg Code-First

] Know how the code] Experimenting with
should look like code

https://app.pluralsight.com/player?course=domain-driven-design-in-
practice&author=vladimir-khorikov&name=domain-driven-design-in-practice-
m1&clip=8&mode=live

HoGent

Pag. 115

https://app.pluralsight.com/player?course=domain-driven-design-in-practice&author=vladimir-khorikov&name=domain-driven-design-in-practice-m1&clip=8&mode=live

10. Unit testen

» Test coverage versus Value distribution

120
100

Test N
coverage Effort .
o

https://app.pluralsight.com/player?course=domain-driven-design-in-
practice&author=vladimir-khorikov&name=domain-driven-design-in-practice-
m1&clip=8&mode=live

HoGent Pag. 116

—\/alue essEffort

https://app.pluralsight.com/player?course=domain-driven-design-in-practice&author=vladimir-khorikov&name=domain-driven-design-in-practice-m1&clip=8&mode=live

10. Unit testen

» TDD — Motto: Rood, Groen, Refactor

° Doe het Falen

* Geen code zonder falende test
° Doe het Werken

- Zo eenvoudig mogelijk
o Maak het Beter

« Refactor

Merk op: in deze cursus
houden we ons niet strict
aan TDD

HoGent Pag. 117

TDD cycle

1

New
,‘ require-
\;J " ment)
Make it Better@ gy

 Refactor | Make it

72

- Write
Make it Work < ‘ \éy

10. Unit testen

» Aanmaken van unit test project

- Een unit test project is een .Net Core class library dat refereert
* naar de SUT (System under test, het project dat je test)
* en een test runner. We gebruiken xUnit: http://xunit.github.io/

HoGent Pag. 119

http://xunit.github.io/

10. Unit testen

» Aanmaken van unit test project
Selecteer de solution in Solution explorer.
Rechtermuisknop > Add > New Project
Kies als taal CH#, en project type Tests
Selecteer xUnit Test Project (.Net core)
Geef naam van het project in: Banking.Tests

o]

(0]

(@)

(0]

O

Add a new project

Recent project templates

.';“ Console App (.NET Core)

*2 ASP.NET Core Web Application

HoGer

c#

c#

Filtering by: C#, Test

nguage -~

|-cj MSTest Test Project (NET Core)

A project that contains MSTest unit tests that can run on .NET Core on Windows, Linux
and MacOS.

Cc#

Linux

macOS Windows

C# I N
|-J Unit Test Project (NET Framework)

A project that contains unit tests,

C#

Windows

Test

|-(J" xUnit Test Project (NET Core)

and MacOS.

C#

Windows

Platform ~

Test

Linux macOS Test

|-(J" NUnit Test Project (NET Core)
A project that contains NUnit tests that can run on .NET Core on Wi

MacOS.

C#

Linux

macOSs Windows

Desktop Test Web

Project type ~

ndows,

Linux arn

A project that contains xUnit.net tests that can run on .NET Core on Windows, Linux

Clear filter

d

Pag. 120

10. Unit testen

» Aanmaken van unit test project

Voeg een referentie toe naar de SUT, het project “Banking”

- Rechtsklik References in Banking.Tests> Add Reference > onder
Projects, selecteer Solution > vink Banking aan

- Dit voegt in project.json Banking toe als dependency

Reference Manager - Banking. Tests

I Aszemblies

4 Projects Mame

——
coiion

b COM

I Browse

o Verwijder de klasse UnitTest1.cs

HoGent

Pag. 121

10. Unit testen

» Time to commit

Banking.Tests to solution”

commit “Add unit test project

* Inspecteer de code
* Commit

HoGent Pag. 122

10. Unit testen

» TIP

o Je zal later bestaande testklassen toevoegen aan het project.

Om zeker te zijn dat je geen compilatie fouten krijgt kan je
best de repo op github clonen

https://github.com/Weblll/03thModelEnUnitTesten.git

> Maak dan een branch aan bij de commit “Add excluded unit
tests for later use”

* Ga naar View History in Team Explorer
- Rechtsklik deze commit > New Branch

Branches | Banking v 7

New Branch « | Merge « | Rebase « | Actions =

unittesﬂ
2b000612
Checkout branch

Create Branch Cancel

* Nu codeer je verder in deze branch

HoGent

Pag. 123

https://github.com/WebIII/03thModelEnUnitTesten.git

10. Unit testen

» Aanmaken van unit testen

o Stappenplan strikt TDD
1. Maak een ontwerp van de klasse
=> Methodes throwen NotImplementedException
Maak een testklasse
Schrijf de testen in de testklasse
Run de testen. Testen falen
Pas de code in de klasse aan
Run de testen opnieuw. Testen slagen
Refactor indien nodig
Run testen. Moeten nog steeds slagen

L 0 N o Uk WN

Herhaal 3-9 tot alle gedrag is aangemaakt

HoGent Pag. 124

10. Unit testen

» Stap 2: Aanmaken van een
testklasse voor BankAccount

> Maak de folders Models/Domain aan
(neem de structuur van gerefereerd
project over)
o Rechtsklik op de folder > Add > New namespace Banking.Tests.Models.Domain
ltem > Class en noem deze {
BankAccountTest class BankAccountTest { }
- Naam testklasse = naam klasse + “Test” |}
* Maak gebruik van namespace Xunit

* Deze klasse bevat testmethodes. Elke
testmethode heeft attribuut [Fact] of
[Theory]

Facts zijn testen met steeds dezelfde
data.

* Theories zijn data driven unit tests.
Dezelfde test definitie voor meerdere
test data reeksen.

HoGent Pag. 125

10. Unit testen

good

How to writevUnit Tests?

The 3A Pattern

-Arrange
-Act
-Assert

HoGent Pag. 126

10. Unit testen

» Stap 3: Aanmaken van unit testen
o 1 unit test is een methode die test of 1 bepaalde methode
doet wat ze moet doen gegeven 1 bepaald concreet geval.
o Zorg voor duidelijke naamgeving.
- De naam moet aangeven wat getest wordt

* Conventies:
- NaamTeTestenMethode_BeschrijvingGeval_TeVerwachtenResultaat

OF
- NaamTeTestenMethodeGivenBeschrijvingGevalShouldTeVerwachten

Resultaat

HoGent Pag. 127

10. Unit testen

» Stap 3: Aanmaken van unit testen

o AAA: de normale flow in een unit test

 Arrange: Initialisatie: Maak een object van de te testen klasse,
initialiseer variabelen,...

 Act: Roep de te testen methode op

* Assert: Controleer of de methode correct is uitgevoerd.

- 2 strekkingen
« 1 assert/test
* Meerdere asserts/test op voorwaarde dat je 1 type gedrag test

HoGent Pag. 128

10. Unit testen

» Stap 3: Aanmaken van unit testen
o Welke testen aanmaken: wees creatief!!!
* Baseer je op use case, maar denk verder. Bedenk alternatieven.

- Test zeker één normaal geval, maar vooral alle mogelijk foute
gevallen en grensgevallen (bvb i.g.v. parameters: alle mogelijke
inputwaarden voor parameter)

« Geef betekenisvolle namen aan de test methodes
 Zie cursus Ontwerpen | en |l

» Schrijf enkel testen voor methodes/properties met gedrag.
Automatic props dien je niet te testen.

HoGent Pag. 129

10. Unit testen

» Stap 3: Aanmaken van unit testen

o Aanmaken van unit test voor constructor BankAccount

- Welk gedrag willen we testen?
- Balance is O voor een nieuwe bankaccount
* AccountNumber bevat de opgegeven waarde

- Eerste test: balance=0 voor nieuwe bankaccount
* Naam methode: NewAccount_BalanceZero
 Unit test retourneert steeds void
* Bevat het attribuut [Fact] -> namespace Xunit!

- Test classes moeten ook public zijn !!!!
public class BankAccountTest

{
[Fact]

public void NewAccount BalanceZero()
{
I

HoGent }

Pag. 130

10. Unit testen

» Stap 3: Aanmaken van unit testen
o Aanmaken van unit test voor constructor BankAccount
- Arrange: Initialiseer de nodige variabelen

[Fact]
public void NewAccount_BalanceZero()

{
//Arrange

string accountNumber = "123-4567890-02";
}

HoGent Pag. 131

10. Unit testen

» Stap 3: Aanmaken van unit testen
o Aanmaken van unit test voor constructor BankAccount
 Act: Voer test effectief uit 2 roep de te testen methode op

[Fact]
public void NewAccount_BalanceZero()
{
//Arrange
string accountNumber = "123-4567890-02";
//Act
BankAccount = new BankAccount(accountNumber);

}

- Voeg bovenaan de klasse volgende using toe, nodig voor klasse
BankAccount

using Banking.Models;

+ de foutmelding “BankAccount is unaccessible due to its protection level” =>
oplossing : pas modifier aan van de class BankAccount. Moet public zijn,
daar het gebruikt wordt in een andere assembly

public l:lass BankAccount
HoGent Pag. 132

10. Unit testen

» Stap 3: Aanmaken van unit testen

o Aanmaken van unit test voor constructor BankAccount
- Assert: vergelijk bekomen resultaat met verwachte resultaat.

- De klasse Assert
 Assert.Equal(expected, actual)
- Test of de waarde van expected gelijk is aan de waarde van actual.
= Alle primitieve datatypes

= Vergelijken van objecten gebeurt op reference basis. Dit kan je
aanpassen door de Equals methode te implementeren

- Assert.NotEqual(expected, actual): idem maar test op verschillend

 Assert.(Not)Same(expected, actual): expected en actual wijzen naar
hetzelfde object.

+ Assert.True(bool conditie), Assert.False(bool conditie)
- Test of conditie gelijk is aan true/false

HoGent Pag. 133

10. Unit testen

» Stap 3: Aanmaken van unit testen

o Aanmaken van unit test voor constructor BankAccount

* De klasse Assert

+ Assert.(Not)Null(actual)
- Test of actual (niet) gelijk is aan null

* Assert.Empty(actual)
* Test of collection leeg is

 Assert.Contains(item, collection), Assert.DoesNotContain(item, coll)
* Test of collection item bevat

* Tresult = Assert.Is(Not)Type<T>(actual)
- Test of actual instantie is (exact) van het type T.

* T result = Assert.IsAssignableFrom<T>
- Test of actual instantie is van het type T (mag ervan erven)

HoGent Pag. 134

10. Unit testen

» Stap 3: Aanmaken van unit testen
o Aanmaken van unit test voor constructor BankAccount

- We maken een BankAccount aan. Hiervoor dient de klasse BankAccount
public te zijn. Pas aan. Doe dit voor alle klassen in de models folder

public klass BankAccount : IBankAccount

* Assert: vergelijk verwachte resultaat (1ste parameter) met het bekomen
resultaat (2de parameter)

[Fact]
public void NewAccount_BalanceZero()
{
//Arrange
string accountNumber = "123-4567890-02";
//Act
BankAccount account = new BankAccount(accountNumber);
//Assert
Assert.Equal(0, account.Bala nce];[
}

HoGent Pag. 135

10. Unit testen

» Stap 4: Run Test:

* We gebruiken Live Unit Testing.
- We starten dit in Menu > Test > Live Unit Testing > Start

- Alle testen worden uitgevoerd (op dit ogenblik maar één) en
slaagt.

- We gaan nu nog testen toevoegen. Van zodra je het bestand
‘saved’, worden de testen uitgevoerd.

- De test runt, als hij slaagt '&s . Als faalt 4o

- Meer informatie over Live unit testing op:

https://blogs.msdn.microsoft.com/visualstudio/2017/03/09/live-
unit-testing-in-visual-studio-2017-enterprise/#integrated

HOGE.‘FIt Pag. 136

https://blogs.msdn.microsoft.com/visualstudio/2017/03/09/live-unit-testing-in-visual-studio-2017-enterprise/#integrated

10. Unit testen

» Stap 4: Run Test:

- Je krijgt ook onmiddellijk feedback over de code coverage. Open
BankAccount.cs

Aline of executable code that is covered by at least one failing test is decorated with a red "x".

X

Aline of executable code that is covered by only passing tests is decorated with a green "v".

v

A line of executable code that is not covered by any test is decorated it with a blue dash "-"

« Of als je een test aan het wijzigen bent, tot je de testen opnieuw
gerund hebt

 Als je op een tfeedback icon klikt krijg je een overzicht van de
testen, en kan je zo de testen opnieuw runnen,... Hover een failed

test toont de reden

HoGent Pag. 137

10. Unit testen

» Aanmaken van unit test voor constructor BankAccount
o Oefening: Maak een 2de test aan: Creatie bankaccount,
rekeningnummer moet overeenkomstig rekeningnummer zijn

- De test zal automatisch worden uitgevoerd.

HoGent Pag. 138

10. Unit testen

» Aanvullingen:
> Beide testmethodes hebben dezelfde arrange/act code

o Oplossing: Voorzie een SetUp en TearDown methode die runt
respectievelijk voor en na de uitvoering van elke test
- Declareer private variabele die binnen elke testmethode gebruikt
kunnen worden in testklasse
- Setup: maak een parameterloze constructor aan en initialiseer de
variabelen

* VS voert de constructor
uit VOOR de uitvoering
van iedere testmethode

public class BankAccountTest {

private readonly BankAccount _account;
private readonly string _accountNumber;

public BankAccountTest()

{
_accountNumber = "123-4567890-02";

_account = new BankAccount(_accountNumber);

}
HOGEFIt Pag. 139

10. Unit testen

» Aanvullingen:
o Beide testmethodes hebben dezelfde arrange/act code

- TearDown: Wens je de variabelen op te kuisen na het runnen van
elke test: public class BankAccountTest : IDisposable

* Laat de testklasse erven {

van IDisposable private string_accountNumber;

* Implementeer de opkuis

in de methode Dispose public BankAccountTest()
* VS voert deze methode _accountNumber = "123-4567890-02";
uit na iedere test _account = new BankAccount(_accountNumber);
methode-uitvoering 1
unit testen

public void Dispose()
{

}
HoGent)

10. Unit testen

» Aanvullingen:

o Unit test die gebruik maakt van SetUp

public class BankAccountTest {

HoGent

private readonly BankAccount _account;
private readonly string _accountNumber;

public BankAccountTest()

{
_accountNumber = "123-4567890-02";
_account = new BankAccount(_accountNumber);
}
[Fact]
public void NewAccount BalanceZero()
{
//Assert
Assert.Equal(0, _account.Balance);
|
[Fact]

public void NewAccount SetsAccountNumber()

{

Assert.Equal(_accountNumber, account.AccountNumber);

}

Pag. 141

10. Unit testen

» Aanmaken test NewAccount_EmptyString_Fails
° Arrange en Act

[Fact]
public void NewAccount EmptyString_Fails()

{

_account = new BankAccount(5 Empty);

}

o Wat met exceptions?

HoGent Pag. 142

10. Unit testen

» Aanmaken test NewAccount_EmptyString_Fails

* Testen op Exceptions

* Als je foutieve parameterwaarden meegeeft aan een test methode
moet deze methode een exception throwen.
* Assert.Throws<T>(lambda expression) met
- T de exception klasse, controleert of de exception gethrowd wordt
- Een lambda expressions. Gebruik de schrijfwijze
* () => methodeAanroep
= Lambda’s worden uitvoerig behandeld in het volgende hoofdstuk.

[Fact]
public void NewAccount EmptyString_Fails()

{

Assert.Throws<ArgumentException>(
() => new BankAccount(S: .Empty));

HoGent Pag. 143

10. Unit testen

» Aanmaken test NewAccount_EmptyString_Fails

* De test faalt...

' T

Test
X Banking.Tests.Models.Domain.BankAccountTest.NewAccount_EmptyString_Fails Banking.Tests.Models.Domain.BankAccountTest. NewAcc
Run Al | Debug Al ount_EmptyString_Fails
Error Message: Assert.Throws() Failure
oL [[raet] Expected: typeof(System.ArgumentException)
32 -1, public void NewAccount EmptyString_Fails() Actual: (No exception was thrown)
StackTrace: at
33 = { Banking.Tests.Models.Domain.BankAccountTest. NewAcc
34)4 Assert.Throws<ArgumentException>(T LT E ST Y

 Of ga naar Test > Live Unit testing Window

Live Unit Testing

ne A3®@2Q1 3 &~

Test
4 €3 Banking.Tests (3)

4 €) Banking.Tests.Models.Domain .

4 9 BankAccountTest (3)
@ NewAccount BalanceZero

Q NewAccount_EmptyStrin...
o NewAccount_SetsAccoun...

Duration
67 ms
67 ms
67 ms
5 ms
10 ms

2ms

Traits

Err...

Asse...

rax|

Search Test Explorer P~ 1

Test Detail Summary |
€3 Banking.Tests.Models.Domain.BankAccountTest.NewAcc {
[E] Source: BankAccountTest.cs line: 32 J

(O Duration: 10 ms (

Message:
Assert Throws() Failure
Expected: typeof(System.ArgumentException)
Actual: (No exception was thrown)
=l Stack Trace:)
at BankAccountTest.NewAccount_EmptyString_Fails()

HoGent

Pag. 144

10. Unit testen

» Aanmaken test NewAccount_ EmptyString Fails

* Code aanpassen.... Maak van AccountNumber een full property.
Selecteer AccountNumber, kies Quick Actions, convert to full property.
De code maakt gebruik van lambda’s (zie volgend hoofdstuk). Klik terug
op Quick Actions en kies « Use block body for property ». Wijzig de naam
van het attribuut in _accountNumber.

private string _accountNumber;|
public string AccountNumber
{

get

{

return _accountNumber;

}

private set
{
if (value == string.Empty)
throw new ArgumentException(nameof(AccountNumber), "AccountNumber must have a value");
_accountNumber = value;
!
t

* ...en de testen slagen

HoGent Pag. 145

10. Unit testen

» Nog meer testen voor BankAccount...
o Klik in de Solution Explorer op Show All Files icon &
o Rechtsklik op BankAccountTest2.cs > Include in project
° Het accountnr moet aan bepaalde regels voldoen, anders wordt
een exception gethrowed
o Qverzicht van de testen:

Waamtsst | Rekerivgmmmer |cevlg

NewAccount_EmptyString_Fails string.Empty ArgumentException
NewAccount_Null_Fails Null ArgumentNullException
NewAccount_ToolLong_Fails “133-4567890-0333“ ArgumentException
NewAccount_WrongFormat_Fails “063-1547563@60 “ ArgumentException

NewAccount_NoDivisionBy97_Fails “133-4567890-03" ArgumentException

HOGEI"It Pag. 146

10. Unit testen

» Nog meer testen voor BankAccount...
- Bekijk de testen. Als ze niet runnen : Test > Live Unit Testing > Stop

en dan terug starten

* Enkele nieuwe testen falen

Live Unit Testing
n e 3123 @s(@4 101 O 8-~
Test
4 €3 Banking.Tests (12)
4 B Banking.Tests.Models.Domain (12)
b @ BankAccountTest (3)
4 Q BankAccountTest2 (9)
@ Deposit_AmountBiggerThanZero_ChangesBalance
@ Equals_2BankAccountsWithDifferentAccountNumber_ReturnsFalse
@ Equals_2BankAccountsWithSameAccountNumber_ReturnsTrue
Q NewAccount_NoDivisionBy97_Fails
Q NewAccount_Null_Fails
Q NewAccount_ToLong_Fails
Q NewAccount_WrongFormat_Fails
[0 Withdraw_AmountBiggerThanZero_ChangesBalance (2)

* Pas de code aan...

HoGent

Duration
45 ms
45 ms
29 ms
16 ms
1 ms
1 ms
1 ms
8 ms
1ms
1 ms
1 ms
2 ms

Traits

Error Messag

Assert.Throw|
Assert.Throw|
Assert.Throw|
Assert.Throw|

Search Test Explorer P~

Test Detail Summary
€3 Banking.Tests.Models.Domain.BankAccountTest2.NewAccount_Null_Fails
[£] Source: BankAccountTest2.cs line: 18
(© Duration: 1 ms

Message:
Assert.Throws() Failure
Expected: typeof(System.ArgumentNullException)
Actual: (No exception was thrown)
= Stack Trace:
at BankAccountTest2.NewAccount_Null_Fails()

Pag. 147

10. Unit testen

» Unit testen voor BankAccount.
° aanpassingen aan de property AccountNumber
o zie help voor Regex, Match

Deze blok code mag weg Opm : door @ hoeven we
want gebruik van de Regex niet \\ te schrijven
: en Match vangt dit op deze
private set .
{ manier op (..) laat toe
 (value == Empty) = subexpressies te

throw new ArgumentException("AccountNumber must have a v
if (value == null)
throw new ArgumentNullException(nameof(AcceuntNumber));

, nameof(AccountNumber)

schrijven, die
nadien als groep te
extraheren zijn

Regex regex = new Regex(@"’\(?<bankcode>ﬁ{3})-{?<rekeningnr>\d{7})-(?<che5ksum>\
Match match = regex.Match(value);
if (!match.Success)

throw new ArgumentException("Bankaccount number format j
int getal = int.Parse(match.Groups["bankcode"].Value + th.Groups["rekeningnr"].Value);
int checksum = int.Parse(match.Groups["checksum"].Value);
if (getal % 97 != checksum)

Named matched
subexpressions :
(?<name>subexpression)

ot correct”, nameof(AccountNumber));

throw new ArgumentException("97 test of the bankaccount number failed", nameof(AccountNumber));

_accountNumber = value;

}

nameOf operator : return de naam van een variabele Pag. 148

10. Unit testen

» Theory

o Data-driven testen.
o Enkel accountNumber is verschillend in vorige unit testen

InlineData: Alle testgevallen

[Theory] / 1 parameter die de
[InlineData("123-4567890-0333")] //too long waarde van het
[InlineData("123-1547563@60")] //wrong format testgeval zal bevatten
[InlineData("123-4567890-03")] //not divisable by 97 L

public voidowAczoun WircngaceouriNurber Faioving sccountumber]

{

Assert.Throws<ArgumentException=(() == new BankAccount(accountNumber));

;

4 NewAccount_WrongAccountNumber_Fails (3)
NewAccount_WrongAccountNumber_Fails(accountNumber: “123-1547563@60")
NewAccount_WrongAccountNumber_Fails(accountMumber: "123-4567830-03")
NewAccount_WrongAccountNumber_Fails{accountNumber: "123-4567890-0333")

HoGent Pag. 149

10. Unit testen

» Unit testen voor Deposit/Withdraw die reeds slagen

- Withdraw_AmountBiggerThanZero ChangesBalance
* Arrange: nieuwe bankrekening met geldig nummer
 Act: Deposit 200, Withdraw 100
- Assert: Balance = 100

* Maar ook met als de balans onder 0 gaat : bvb 200 storten en dan 300
afhalen

Deposit_ AmountBiggerThanZero ChangesBalance

* Arrange: nieuwe bankrekening met geldig nummer
* Act: Deposit 100
 Assert: Balance = 100

HoGent Pag. 150

10. Unit testen

» Unit testen Deposit/Withdraw falen

o Maak zelf de testen aan voor
* Withdraw_NegativeOrZeroAmount_Fails()
- Deposit_NegativeOrZeroAmount_Fails()
o run de testen...
o Pas de code aan en laat ze slagen!

HoGent

Pag. 151

10. Unit testen

» Unit testen (TDD)
Deposit/Withearaw

oefening: schrijf de gepaste testen

b 9 Deposit_NegativeOrZeroAmount_Fails (2)
[@ Withdraw_NegativeCOrZeroAmount_Fails (2)

oefening: pas de code aan

\ > I 6 Deposit_MegativeOrZeroAmount_Fails (2)

HOGeI‘It 0 Withdraw_NegativeOrZeroAmount_Fails (2)

U v

10. Unit testen

» We hebben verschillende opties om de validatie te
doen
> |n de withdraw en deposit method? Maar dan duplicate code
o |n de Transaction klasse

* In de constructor
- Of in een private setter

HoGent Pag. 153

10. Unit testen

» Testen van de klasse Transaction

P Q Deposit_NegativeOrZeroAmount_Fails (2)
[Q Withdraw_NMNegativeOrZeroAmount_Fails (2)

#region Constructors
public Transaction{decimal amount, TransactionType type)
{
if (amount <= 0)
throw new ArgumentOutOfRangeException("Amount must be positive", nameof(amount));
Amount = amount;
TransactionType = type;
DateOfTrans = DateTime.Today;
!

b G Depaosit_NegativeOrZerocAmount_Fails (2)
H O G ent @ withdraw_NegativeOrZeroAmount_Fails (2

10. Unit testen

v
v
v

v

Run All | Debug Al

HoGent

» Live unit testing

° |In de code kan je per method de testen zien en of ze al dan
niet slagen (hover over v of x voor de methode)

Test

tion Transaction.

Banking.Tests.Models.Domain.BankAccountTest2. Withdraw_NegativeOrZeroAmount_Fails(amount: -100)

Banking.Tests.Models.Domain.BankAccountTest2. Withdraw_NegativeOrZercAmount_Fails(amount: ()

Banking.Tests.Models.Domain.BankAccountTest2. Withdraw_AmountBiggerThanZero_ChangesBalance...

Banking.Tests.Maodels.Domain.BankAccountTest2 Withdraw_AmountBiggerThanZero_ChangesBalance...

52
53
54
55
56

AN

O TCICTCNCCS TOF 2/ P a55ME T RATTTE STy T, A adys dago T I autrmor, 3 L‘r‘EHgES

public virtual void Withdraw(decimal amount)
_transactions.Add(new Transaction(amount, TransactionType.Withdraw));
Balance -= amount;

Pag. 155

10. Unit testen

» Codelens
o |n te stellen via Tools > Options > Text Editor > All Languages >
Code Lens
o Hiervoor dien je de testen wel te runnen via Test > Windows >
Test Explorer en dan “Run all”
> Toont boven elke methode het aantal testen en de aantal
testen die slagen (testen moet je gerund hebben)

public virtual void Withdraw(decimal amount)

{

_transactions.Add(new Transaction(amount, TransactionType.Withdraw));

Balance -= amount;

}

HoGent Pag. 156

10. Unit testen

» Andere manier om testen te runnen
o Test > Run all Tests
o Rechtsklik in een testklasse > Run tests
o Rechtsklik op een test > Run test

> Via Test > Test Explorer kan je het resultaat bekijken

Test Explorer

> -C'o A1 @16 Qo0 B4z -

Test Duration Traits Error Message
4 @ Banking.Tests (16) 35 ms
4@ Banking.Tests.Models.Domain (16) 35 ms
4 @) BankAccountTest (2) 12 ms
@) NewAccount_BalanceZero 10 ms
/] NewAccount_EmptyString_Fails 1 ms
@) NewAccount_SetsAccountNumber 1 ms
I @) BankAccountTest? (13) 23ms

HoGent Pag. 157

10. Unit testen

» CodeCoverage

o Test Analyze Code Coverage for All
- Toont het % van de code die door de testen getest wordt.

Code Coverage Results

ksa607_NB1100371 2019-09-17 22 41 30cc - | 2 G

Hierarchy

4 EE ksa607_NB11003712019-09-1... |

4 = banking.dlil
A} Banking

4 {} Banking.Models.Domain
4 % BankAccount

@ BankAccount(str...

Deposit(decimal)

@D D@

) set_Balance(dec..
I ®% SavingsAccount
> ®% Transaction

Equals(object)
GetHashCode()
GetTransactions(...
ToString()
Withdraw(deci...
get_AccountMu...
get_Balance()
get_NumberOfT...
set_AccountMu...

MNot Covered (Blocks)
146

134

50

84

61

0

X

Mot Covered (% Blocks)
57.03%
7243%
100.00%
62.22%
58.10%
0.00%
0.00%
14.29%
100.00%
100.00%
100.00%
83.33%
0.00%
0.00%
100.00%
0.00%
0.00%
100.00%
56.25%

Covered (Blocks)
110

51
0
51
44
5
6
6
0
0
0
1
2
1
0

22
1
0
7

Covered (% Blocks)
42.97%
27.57%
0.00%
37.78%
41.90%
100.00%
100.00%
85.71%
0.00%
0.00%
0.00%
16.67%
100.00%
100.00%
0.00%
100.00%
100.00%
0.00%
43.75%

Pag. 158

10. Unit testen

» Tips

o 1 methode test 1 item. 2 strekkingen
* ldeaal 1 Assert/test methode
* OF meerdere asserts/test maar methode test 1 type gedrag

o Nadelen van veel Asserts in 1 methode
* Als 1 Assert binnen test methode faalt, voert VS de rest methode niet uit
- De methode wordt moeilijk te lezen
* De kans dat je in de methode een bug schrijft wordt groter
- De kans dat je de methode moet debuggen wordt groter

o De werking van 1 test methode mag niet afhangen van de werking
van een andere testmethode

o Testmethodes moeten in willekeurige volgorde kunnen uitvoeren.

o Schrijf geen testen voor bestaande libraries die je gebruikt of voor
gegenereerde code (get/set)

HoGent Pag. 159

10. Unit testen

4 T|me to commit commit “Add Unit tests for

BankAccount”

Changes | Banking
* Inspecteer de code Branch: master

Unit test BankAccount]

« Commit

Commit All | Actions =

4 Changes (3)
4 Chdata-karing' 20162017\Webl I\ Les3\Banking
e srchBanking'Models
C# BankAccount.cs
d G| test\Banking. Tests\Models
C#* BankAccountTest.cs [add]
C* BankAccountTestDeel2.cs [add]

HoGent Pag. 160

10. Unit testen

» Testen van de klasse Transaction

o Voeg de klasse TransactionTest aan de Models folder
(rechtsklik Include in project)

o Run de testen in de klasse TransactionTest
o De testen slagen allemaal

A 0 TransactionTest (9) 16 ms
3 IsDeposit_IfDeposit_ReturnsTrue 3 ms

ﬁ IsDeposit_IfWithDraw_ReturnsFalse 1 ms

@ IsWithDraw_IfDeposit_ReturnsFalse 1 ms

0 IsWithDraw_IfWithDraw_ReturnsTrue 1 ms

P ﬁ NewTransaction_MegativeOrZeroAmount_Fails (2) 2 ms

ﬁ NewTransaction_SetsAmount 1 ms

ﬁ MNewTransaction_SetsDateOfTrans 4 ms

3 MewTransaction_SetsTransactionType 3 ms

HoGent

Pag. 161

10. Unit testen

» Testen van BankAccount Transaction
> Voeg BankAccountTransactionTest.cs toe aan project

> De testen zijn nog niet volledig geimplementeerd
- Deze testen worden aangeduid met de Skip parameter

[Fact(Skip="Not yet implemented")]
public void WithDraw Amount_AddsTransaction() |

I WithDraw_Amount_AddsTransaction

- Implementeer deze testen, verwijder de Skip parameter.
- Bekijk de overige

HOGEFIt Pag. 162

10. Unit testen

» Aanpassen van BankAccountTransactionTest

o Deposit_ Amount_AddsTransaction moet nagaan of transactie
is toegevoegd.

* Probleem: IEnumerable laat enkel toe om de collectie te
overlopen. Aantal en elementen via index kunnen niet worden
opgevraagd

- vorm de I[Enumerable om omdat we toegang moeten krijgen tot
het eerste element uit de collectie...

[Fact] \
public void Deposit Amount_AddsTransaction()
{
_bankAccount.Deposit(100);
Assert.Equal(1, bankAccount.NumberOfTransactions);
//Test of de toegevoegde transactie de juiste gegevens bevat
Transaction t = _bankAccount.GetTransactions(DateTime.Today, DateTi me.TDda% ToArray()[0];
Assert.Equal(100, t.Amount);

Assert.Equal(TransactionType.Deposit, t.TransactionType); . _
HoC } Tolist() kan je ook

cebruiken

10. Unit testen

» Aanpassen van BankAccountTransactionTest

o GetTransactions_NoParameters_ReturnsAllTransactions()
moet nagaan of alle transacties geretourneerd worden.

* Probleem: IEnumerable laat enkel toe om de collectie te
overlopen. Aantal en elementen via index kunnen niet worden
opgevraagd

[Fact]

public void GetTransactions_NoParameters ReturnsAllTransactions()
{

_bankAccount.Deposit(100);

_bankAccount.Deposit(100);

Transaction[] t = bankAccount.GetTransactions(null, nul‘}.ToArray[];
ﬂssert.Equal{Z

}

Of new List<T>() of ToList(), maar dan de Count property gebruiken
List<Transaction>t = new List<Transaction>(_bankAccount.GetTransactions(null, null));

HoGent AssertEqual(2, t.Count);

__ 64

10. Unit testen

» Time to commit

Transaction”

commit “Add Unit tests for

* Inspecteer de code
* Commit

HoGent Pag. 165

10. Unit testen

» SavingsAccount
o Voeg SavingsAccountTest.cs toe aan Models folder
Banking.Tests
° run de testen...
° Voeg 2 testen toe

* Implementeer de test Withdraw_I|fBalanceGetsNegative Fails

* Je mag niet in het rood gaan op een SavingsAccount. Dit throwt een
InvalidOperationException (TDD)

* Doe de test eerst falen
* Pas de code aan
* De test moet slagen

HoGent

Pag. 166

10. Unit testen

» SavingsAccount

o Implementeer de test Addinterest_ChangesBalance

 De test zal onmiddellijk slagen, want de code is reeds
geimplementeerd in SavingsAccount.

* Het is best practice om een test altijd eerst te laten falen. Plaats
daarom de code in SavingsAccount die de test doet slagen eerst in
commentaar

* Dan faalt de test
- Dan plaats je de code weer uit commentaar
- Dan moet de test slagen

HoGent Pag. 167

10. Unit testen

» SavingsAccount
° Voeg twee testen toe:

[Fact]
public void Withdraw_[fBalanceGetsNegative Fails()

{

Assert.Throws<InvalidOperationException>(() => _savingsAccount.Withdraw(200));

}

[Fact]
public void AddInterest_ChangesBalance()

{

_savingsAccount.AddInterest();
Assert.Equal(204, savingsAccount.Balance);

}

HoGent Pag. 168

10. Unit testen

» SavingsAccount
° Voeg twee testen toe:

public override void Withdraw(decimal amount)
{
if (amount + WithdrawCost > Balance)
throw new InvalidOperationException("Balance cannot be negative”);
base Withdraw(amount);
base.Withdraw(WithdrawCost);

}

@) SavingsAccountsTests (5)
@) Addinterest_ChangesBalance
@ NewSavingsAccount_SetsInterestRate
@ Withdraw_Amount_AddsCosts
ﬁ Withdraw_Amount_CausesTwoTransactions
0 Withdraw_IfBalanceGetsMegative_Fails

HoGent

Pag. 169

10. Unit testen

» Time to commit

SavingsAccount”

commit “Add Unit tests for

Add unit tests for SavingsAccount
* Inspecteer de code

« Commit

Commit All = Stash = Actions -

4 Changes (3) <+ -

¥ | Chtemp\Banking
F | Banking\Models\Domain
C* SavingsAccount.cs
- Banking.Tests
¥ | Models\Domain
C* SavingsAccountTest.cs
Banking.Tests.csproj *

HoGent

Pag. 170

10. Unit testen

» Refactor de code

o Maak van Balance in BankAccount een berekende property.
* Overloop alle transacties en bepaal zo het total
- Alle testen zouden nog steeds moeten slagen.

commit “Refactor property Balance in

BankAccount”

HoGent Pag. 171

10. Unit testen

» Advanced: use Theory and MemberData

o Ga terug naar de Master branch. Bekijk de klasse
BankAccountTransactionTest.cs

o Nu wordt gebruik gemaakt van Theories. Maar daar de Inline
data geen constante waarden bevat dient een MemberData
object te worden aangemaakt

o Bekijk de code. Meer info op
http://www.martinwilley.com/net/code/test/parametrized.ht
ml

o commit “Refactor unit test BankAccountTransaction: gebruik
van Theory and MemberData”

commit “Refactor unit test

P BankAccountTransaction: gebruik van
HoGent Theory and MemberData” Pag. 172

http://www.martinwilley.com/net/code/test/parametrized.html

Appendix

HoGent

Appendix : Naming Conventions

Identifier Case Example
Class Pascal AppDomain
Enum type Pascal ErrorLevel
Enurn values Fascal FatalError
Ewent Pascal ¥YalueChange
Exception class Pascal WehbhException
Mote Always ends with the suffix Exception.
Read-only Static field Fascal Red¥alue
Interface Pascal IDisposable
Mote Always begins with the prefix I.
Method Pascal ToString
Marmespace Pascal System.Drawing
Pararneter Carmel typeMame
Property Fascal BackColor
Protected instance field Carmel red¥alue
Mote Rarely used, A property is preferable to using a protected instance field.
Public instance field Fascal Red¥alue

Mote FRarely used, & property is preferable to using a public instance field.

HoGent

Pag. 174

Appendix : Documenteren C# code

» Start met /// (triple slash) gevolgd door 1 van
onderstaande XML elementen

o Rechtstreeks in code toevoegen
o Of in Class Diagram > Details View > Summary kolom

Predefined XML Documentation

Element Meaning in Life

<C> Indicates that the following text should be displayed in a specific
“code font”

<code> Indicates multiple lines should be marked as code

<example> Mocks up a code example for the item you are describing

<exception> Documents which exceptions a given class may throw

<list> Inserts a list or table into the documentation file

<param> Describes a given parameter

<paramref> Associates a given XML tag with a specific parameter

<permission> Documents the security constraints for a given member

<remarks> Builds a description for a given member

<returns> Documents the return value of the member

<seer Cross-references related items in the document

¢seealso Builds an "also see” section within a description

<summary> Documents the “executive summary” for a given member

H (9] G e «walue> Documents a given property

Appendix : Documenteren C# code

o Voorbeeld

/// <summary>

/// Constructor
/// </summary>

/// <param name="account”>Number of bank account</param>

public BankAccount(string account)

° In VS: documentatie wordt getoond

nnnnnnnnnnnnn

EankAccount(string account)
Constructor
account: Number of bank account

HoGent

Appendix : Documenteren C# code

» Generatie xml file
° Via command prompt VS
* Csc /doc:DocBankAccount.xml c:/..../*.cs
o Instellen in VS, wordt bij compilatie automatisch gegenereerd

- Selecteer project: bvb BankingLibrary. Ga naar de Build tab van
zijn Properties. Vul pad en filenaam in

Cakpuk

Cuikput path: bir'Debug’,
im Debug) ingLibr ary =

#ML documentation File:

» Generatie andere formaten (html,..) vertrekkende van

xml file:
o NDoc: http://sourceforge.net/projects/ndoc

HoGent

http://sourceforge.net/projects/ndoc

Appendix: Collections

Many collection classes...
ReadOnlyCollection<T>

SortedList<TKey, TValue> LinkedList<T>
Stack<T> ObservableCollection<T>
HashSet<T> _
Array L1st<T> SortedSet<T>
Collection<T>

Dictionary<TKey, TValue>
KeyedCollection<TKey, TItem>

|

T T T

HoGent Pag. 178

Appendix: Collections

T[] List<T>

» List collecties

o elementen van een collectie zijn toegankelijk via een index
- zero-based indexing

> het contract voor op index gebaseerde collecties ligt vast in

IList<T> :
TlicteTs T is het type van
A)
-’ de elementen in de
collectie

o List collecties zijn efficient
- geheugengebruik

* snelheid om elementen te benaderen

HoGent

Pag. 179

Appendix: Collections

Dictionary<TKey, TValue>

» Dictionaries

(@)

(e}

(@)

(e}

elementen in de collectie bevatten een

key-value pair

elementen van de collectie zijn toegangkelijk via de key
het contract voor dictionaries ligt vast in IDictionary<TKey,

TValue>
IDictionary<TKey, TValue>
~ \
AN
L het type van de keys ’ ‘ het type van de values ’

dictionaries zijn meestal geimplementeerd als een hash tabel

HoGent

Pag. 180

Appendix: Collections

HoGent

Using key

Flement

Using index

IIIIHHHHEH!IIII

Pag. 181

Appendix: Collections

» IDictionary<Tkey, TValue>

IDictionary<int, string> klasLijst = new Dictionary<int, string> ();
klasLijst.Add(1, "Jan Peterson");
klasLijst.Add(2, "Steven Spielberg");
foreach (int i in klasLijst.Keys)
Console WriteLine(i. ()+" " + klasLijst[i]);
foreach (string s in klasLijst.-Values)
Console WriteLine(s);
Console WriteLine(klasLijst[1]);
Console WriteLine(klasLijst.Count); |

Console.ReadLine(); P P E———
B = Steven Spielberg

Peterson

- Of verkort met dictionary initializer Steven Spielberg
Jan Peterson

IDictionary<int, string= = new Dictionary<int, string> =

{

[1] = "Jan Peterson",
[2] = "Steven Spielberg"

Appendix: Col

» IDictionary<Tkey,
TValue>
o Methodes

HoGent

Add(TKey, TWalue)

Clear}

ContainsKey|TEeay)

ContainsVWalue(TValus)

Equals{Ohject)

Finalize[)

GetEnumerator()

GetHazhCode()

GetObjectData
[SerializationInfo, StreamingContext)

GetType()

MemberviseClone()

CnDezerizlization[Ohject)

RernovelTkey)

TaS5tring()

TryGetWValus[TEey, TWalue)

Adds the specified key and value to the dictionany.

Rermaoves all keys and values from the Dictionary<Tkey, TWalue>_

Determines whether the Dictionary<TEey, TWalue> contains the
specified key.

Determines whether the Dictionary<Tey, TWalus> contains a
specific valus.

Determines whether the specified object i= equal to the current
object[Inheritaed from Object.)

Allows an object to try to free resources and perform other
cleanup cperations before it is reclaimed by garbage collection.

[Inherited from Ohbject.)

Returns an enumerator that iterates through the
Dictionany<TEey, TWalue>.

Serves as the default hazh function. (Inherted from Object.)

Implements the System. Runtime. Zerizlizaticnl5erializable
interface and returns the data needed to zerizlize the

Dictionarny<TKey, TWalue> instance.

Gets the Type of the current instance. [Inherited from Object)

Creates a shallow copy of the current Object.(Inherited from
Ohbject.)

Implements the System Runtime Zerizlizaticn5erializable
interface and raizes the deserizlization event when the
dezerialization iz complete.

Rermoves the value with the specified key from the
Dictionary<TEey, TWalus>.

Returns & string that represents the current cbject [Inherted from
Ohject.)

Gets the value associzted with the specified key.

Appendix: Collections

» Dictionary<Tkey, TValue>
> Concrete collectie met key/waarde paren

» SortedDictionary<Tkey, TValue>
o Collectie key/waarde parent, gesorteerd op de key

HoGent Pag. 184

Appendix: Collections

» Sets

o focus van deze collecties is niet zozeer op de afzonderlijke
elementen maar op al de elementen in de collectie samen

- eris geen lookup mechanisme om 1 element van een set op te

o sets kan je gemakkelijk combineren
- ~verzamelingen: unie, verschil, ...
o het contract voor sets ligt vast in I1Set<T>

HoGent

halen

HashSet<T>

Pag. 185

Appendix: Collections

» Dictionaries vs Sets

HoGent

Dictionaries Sets

3

Often based on hashtable

Lookup with keys

Pag. 186

Appendix: Collections

» Raadplegen van collecties

Enumerating Looking up items

All collections Many
collections

NOT: Sets

NOT: Linked lists,
Stacks, Queues

HoGent Pag. 187

Appendix: Collections

» Wijzigen van collecties

HoGent

Collection Operations

Look up an element Add an element

Writing

(by index or key) : Remove an element

LISTS: Insert an element

Enumeratethe elements
(Replacean element)

Pag. 188

Appendix: Collections

» Overzicht C# collections

my

/
Old .NET 1.0 cone~: -~ o { Obsolete = N
. s.Specialized;
A

deze non-generic types
(zoals ArraylList)

kan je nog tegenkomen
(backwards compatibility)

using System.Collections.Generic;
: using System.Collections.ObjectModel;

Concurrent collections (NET 4.0 and later only)

using System.Collections.Concurrent;

Immutable collections (NET 4.5 only - via NUGET package)

using System.Collections.Immutable;

HoGent

deze collections zal je het
meest courant gebruiken

Pag. 189

Appendix: Collections

» Overzicht C# collections

‘ Old .NET 1.0 come-"~"~

eneric;

I ——————————— - 1 7- 4 : 9 "" ;
Core generic collections US%ng System.Col)
| using System.© _oW§ :

iectModel ;

Concurrent collections

Immutable collections (NET45 Only -via NUGET pa"-:k 3(;]‘5‘:'

using System.Collections.Immutable;

dit wordt in een apart
hoofdstuk behandeld: zie

Hfst 05Linqg

HoGent

Pag. 190

Appendix: Collections

» ARRAY

° is een reference type
> declaratie/initialisatie

int[] 1;

int[] J = new int[4];

- array initializers

int[] numbers = pnew int[] { 1, 4, 9, 16, 25 };

int[] numbers2 = { 1, 4, 9, 16, 25 };

HoGent

Compiler turns this...

int eight = 8;

int[] squares = new int[] {
1,
2 X2,
eight + 1,
int.Parse("16"),
(int)Math.Sqrt(625)

...into (roughly) this

int eight = 8;

int[] x5 = new int[5];

x5[0] i

X5[1] = 2*%2;

x5[2] = ‘eight + 1}

x5[3] = int.Parse("16");
x5[4] = (int)Math.Sqrt(625);

Pag. 191

Appendix: Collections

» ARRAY

o Enumereren: for/foreach

int[] numbers = { 1, 4, 9, 16, 25 };

for (int i = @; i < numbers.Length; i++)

{

Console.WriteLine(numbers[i]);
h
foreach(int i in numbers)
{

Console.WriteLine(numbers[i]);
}

HoGent Pag. 192

Appendix: Collections

» ARRAY

° Enumereren:
- met foreach kan je de elementen van de array niet vervangen

- als de elementen een reference type zijn kan je kan wel de
elementen veranderen (via de reference)

for (int i = @; i < numbers.Length; i++)

: numbers[1] = numbers[i] + 1;
¥
foreach(int i in numbers)
{
1=1+ 1;
} @ (local variable) int i

Cannot assign to 'i' because it is a 'foreach iteration variable'

HoGent Pag. 193

Appendix: Collections

» ARRAY

o Wat kan je doen met array’s?
- zie documentatie op msdn: Array Class!
- enkele properties...
* Length
- enkele methods...
* BinarySearch
* FindAll
* Sort
* Copy/CopyTo
* IndexOf

HoGent Pag. 194

Appendix: Collections

» nog meer collections:
o Queue<T>
- first-in, first-out collectie van objecten
o Stack<T>

- Represents a variable size last-in-first-out (LIFO) collection of
instances of the same arbitrary type.

o LinkedList<T>
- Represents a doubly linked list.
o SortedSet<T>

- Represents a collection of objects that is maintained in sorted
order.

HoGent Pag. 195

Appendix: Collections

» yield return

o VVoor het bouwen van een IEnumerable

private [Enumerable<int> ComputeAges()
{
yield return 21;
yield return 22;
for (inti=23;i<32; i++)
yield return i;

foreach(int age in ComputeAges())
ConSGIe.WriteLine{age.T-:::Stringﬂ];l

HoGent

De eerste iteratie in foreach loop zorgt voor
de uitvoering van de ComputeAges t.e.m.
het eerste yield return statement. Deze
iteratie retourneert 21, en de huidige locatie
in de ComputeAges methode wordt
behouden.

Bij de volgende iteratie in foreach gaat de
uitvoering in de iteratie methode
ComputeAges verder en wordt 22
geretourneerd,.... tot einde iteratie methode
bereikt

Pag. 196

Appendix: Generieke klassen

» Generieke klassen kapselen operaties, die niet
specifiek voor een bepaald gegevenstype zijn, in.

» Het meest voorkomende gebruik voor generieke
klassen zijn collecties zoals linked lists, hash tables,
stacks, queues, trees, enzoverder.

» Bewerkingen zoals het toevoegen en verwijderen van
objecten uit de collectie worden uitgevoerd op
dezelfde manier, ongeacht het type gegevens dat
wordt opgeslagen.

HoGent Pag. 197

Appendix: Generieke klassen

public class MagischeHoed<T>

{
private |List<T> dingen = new List<T>();
public void Add(T ding)

{
dingen.Add(ding);

}

}

Konijn roger = new Konijn("Roger");
MagischeHoed<Konijn> hoed = new MagischeHoed<Konijn>();
hoed.Add(roger);

HoGent

Pag. 198

Appendix: Generieke klassen

» Je kan constraint toevoegen aan T
o Je kan eisen dat T een class of struct is

o Je kan eisen dat T een public default constructor heeft

* Nodig als je ergens in een methode de default constructor
aanroept, anders krijg je compilatiefout

public class MagischeHoed<T> where T : class, new()

o Je kan eisen dat T erft van een interface of van base class

public class MagischeHoed< > where TDier : IDier

HoGent Pag. 199

Appendix: Oefening

» Tutorial : https://docs.microsoft.com/en-
us/dotnet/csharp/tutorials/nullable-reference-types

HoGent Pag. 200

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/nullable-reference-types

Referenties

» Unit Testing with Visual Studio: Freeman, A. (2014).
Pro ASPNET MVC 5 (p. 784). Apress, hoofdstuk 6, p137
— p145.

» Pluralsight: cursus C# Fundamentals with C# 5.0 van
Scott Allen

» Pluralsight: cursus C# Collections Fundamentals van
Simon Robinson

HoGent Pag. 201

Documentatie en Tutorials

» Tutorial:
o https://www.microsoftvirtualacademy.com/

o http://www.csharp-station.com/Tutorial.aspx

» C# Programming Guide:
o http://msdn.microsoft.com/en-us/library/67ef8sbd.aspx

» CH Reference:
o http://msdn.microsoft.com/en-us/library/618ayhy7.aspx

HoGent Pag. 202

https://www.microsoftvirtualacademy.com/
http://www.csharp-station.com/Tutorial.aspx
http://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
http://msdn.microsoft.com/en-us/library/618ayhy6.aspx

