

Huidige versie C# 8

1. Symbolen

2. Datatypes

3. Operatoren

4. Controle structuren

5. Array

6. Exceptions

7. What’s new in C# 8

Pag.2

 Kennismaking met de C# taal
◦ Bekijk de slides

◦ Of overloop een tutorial

 https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/intro-to-
csharp/index (interactieve tutorials)

 http://msdn.microsoft.com/en-us/library/ms228602(v=VS.90).aspx
(C# for Java developers)

 PluralSight (zie volgende slide)

Pag. 3

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/intro-to-csharp/index
http://msdn.microsoft.com/en-us/library/ms228602(v=VS.90).aspx

 Kennismaking met de C# taal
◦ Of op Pluralsight :

Pag. 4

hoofdstuk 3

hoofdstuk 1

 Wens je de code in de slides uit te
proberen
◦ In VS : New Project > Language =C#,

project type=Console. Kies Console
App(.Net Core). Klik Next. Geef een
naam in, bvb Demo en een locatie in

◦ Open Program.cs, dit bevat de klasse
Program met static methode Main
methode. Hier plaats je de code in

◦ Schrijven naar de Console kan via
Console.WriteLine

◦ Een voorbeeldje

Pag. 5

 Wens je de code in de slides uit te proberen
◦ Run de code, F5

◦ Press any key om de console af te sluiten

◦ Meer op :
https://www.microsoft.com/net/tutorials/csharp/getting-
started/hello-world

Pag. 6

https://www.microsoft.com/net/tutorials/csharp/getting-started/hello-world

 C# is opgebouwd uit namen, keywords, cijfers,
karakters, strings, operatoren, commentaar, …

 Namen:
◦ mogen letters, cijfers en _ bevatten

◦ beginnen steeds met een letter of _

◦ C# is case-sensitive

 Keywords: http://msdn.microsoft.com/en-
us/library/x53a06bb.aspx

Pag. 8

http://msdn.microsoft.com/en-us/library/x53a06bb.aspx

 Commentaar:
◦ single line: //

◦ delimited: /* ……
……
…… */

Pag. 9

 C# is strongly typed
◦ Elke variabele en object krijgt een type bij declaratie

 Een data type is:
◦ een ingebouwd data type, zoals int of char

◦ of een user-defined data type, zoals een class of een interface
of delegate.

 Data types zijn :
◦ Value Types die de actuele waarde bevatten, of

◦ Reference Types, die een reference bevatten naar de actuele
data.

Pag. 11

http://msdn.microsoft.com/en-US/library/s1ax56ch(v=vs.80).aspx
http://msdn.microsoft.com/en-US/library/490f96s2(v=vs.80).aspx

 Common Type System (CTS) :
◦ Bevat de built-in data-types met bijhorende methodes die

binnen alle .NET programmeertalen gebruikt kunnen worden.

Pag. 12

Category
System
Type

Description
C# data type
(shorthand notation)

Integer Byte An 8-bit unsigned integer. (-128 … 127) byte

Int16 A 16-bit signed integer. (-32.768 .. 32.767) short

Int32 A 32-bit signed integer. (-2.147.483.648..
2.147.483.647)

int

Int64 A 64-bit signed integer. (-2
63

..2
63

-1) long

Floating point Single A single-precision: 32-bit floating-point number.
(+1.4E-45..+3.4E38) (7 cijfers)

float

Double A double-precision: 64-bit floating-point number.
(+5E-324..+1.7E308) (15 cijfers)

double

Logical Boolean A Boolean value (true or false). bool

Other Char A Unicode (16-bit) character. char

Decimal A decimal value. 128 bit signed number (29 cijfers –
10delig talstelsel)

decimal

Class objects Object The root of the object hierarchy. object

String An immutable, fixed-length string of Unicode
characters. Limited by system memory

string
Pag. 13

 CTS : de (belangrijkste) built-in data types

 Common Type
System
◦ Value-type : bevatten

de actuele waarde

 Simple types :
voorgedefinieerde
value types (zijn
structs)

 structs

 enum

◦ Reference-type :bevat
een verwijzing naar
een object

Pag. 14

 Value types
◦ Value types bevatten de actuele waarde. Toekennen van een

value type aan een andere kopieert de waarde.

◦ Erven van System.ValueType, die op zijn beurt erft van Object

◦ Kunnen geen null waarde bevatten.

 Wordt opgelost door Nullable types (zie verder)

Pag. 15

http://msdn.microsoft.com/en-us/library/s1ax56ch.aspx
http://msdn.microsoft.com/en-us/library/system.valuetype.aspx

 Simple types
◦ int, bool,…

◦ Declaratie

 bepaalt naam variabele, datatype (benodigde opslagruimte) en scope

◦ Declareer en initialiseer een variabele vóór gebruik

◦ int,… zijn aliassen voor C# data types System.Int32,…. (zie structs)

Pag. 16

datatype naam = initiele waarde;

int i, d;

int k = 5;

d=0;

d+=i + k; //genereert een compiler fout “use of unassigned local variable i”

System.Int32 i = 0;

Is hetzelfde als int i=0;

 Simple types
◦ Voor instantiatie maak je gebruik van constructor of literals

◦ De default waarden zijn (en meteen ook de schrijfwijze voor literals)

 bool : false of true

 char : '\0‘ (1 lege karakter)

 int : 0

 decimal : 0.0M

 double : 0.0 of 0.0D

 float : 0.0F

 long : 0L

 DateTime : 1/1/0001 12:00:00 AM

Pag. 17

int i = new int();

int j = 0;

 struct type
◦ Voor de creatie van een value type bestaande uit 1 waarde.
◦ Is vergelijkbaar met een klasse, maar is een VALUE type (geen

reference type). Een struct type kan fields, methods en constructors
hebben, maar wordt gemanaged op de stack en dus doorgegeven by
value en representeert 1 waarde

◦ Concreet wordt binnen .Net veel gebruik gemaakt van
structs: int, long en float bvb zijn eigenlijk niks anders dan verkorte
schrijfwijzen voor de structs System.Int32,
System.Int64 en System.Single. Deze structs hebben fields,
constructors (int i = new int();) en methods (zoals ToString(), vb
2.ToString()).

◦ Een struct wordt voornamelijk gebruikt voor entiteiten die belangrijk
zijn om hun waarde, zoals een getal, een datum, ...

◦ Meer info : http://msdn.microsoft.com/en-us/library/ah19swz4.aspx
◦ We gaan zelf geen structs bouwen maar gaan er wel veel gebruiken

Pag. 18

http://msdn.microsoft.com/en-us/library/ah19swz4.aspx

 enum types
◦ Is ook een value type

◦ Lijst van constante namen en de overeenkomstige numerische
waarde (default van type System.Int32). Numerisch waarde
wordt op de stack gezet.

//definitie enum

public enum ColorType

{

Red = 0,

Blue = 16,

Green = 256

};

Pag. 19

 enum types
static void Main(string[] args) {

ColorType c = ColorType.Blue; //declaratie + instantiatie variabele van dit type

Console.WriteLine(c); // de constante naam nl. Blue

Console.WriteLine((int)c); // bijhorende waarde nl. 16

//overlopen van de enumeratiewaarden

foreach (string s in Enum.GetNames(typeof(ColorType)))

Console.WriteLine(s);

// Parsen : omzetten van een string of numerische waarde naar een enum datatype

c = (ColorType)Enum.Parse(typeof(ColorType), "Green");

// Enum.Parse retourneert een object. Vergeet cast niet!!

Console.WriteLine(c); // Green

Console.ReadLine();

}

Pag. 20

 Reference types
◦ Variabelen van het reference type, bevatten een verwijzing

naar de actuele data.

◦ Built in reference types

 Object

 String

◦ Zelf reference types definiëren, via de keywords

 class

 interface

 delegate

Pag. 21

 System.Object
◦ de root van type hiërarchie

◦ Alle types zijn hiermee compatibel, zowel value als reference

◦ Methodes

Pag. 22

http://msdn.microsoft.com/en-us/library/system.object.aspx

 String
◦ Is in feite een character-array (maar niet volledig als array te

benaderen)

◦ Immutable type : éénmaal een waarde toegekend kan je
waarde niet meer wijzigen.

◦ Vergelijken van string-waarde

 == (vergelijkt de inhoud! En dit in tegenstelling tot == bij objecten
waar gekeken wordt of beiden naar zelfde object wijzen.)

 Equals

Pag. 23

string s1 = “abc”;

string s2 = “abc”;

Console.WriteLine (s1 == s2) ; // resultaat is true

Console.WriteLine (s1.Equals(s2)); //resultaat is true

http://msdn.microsoft.com/en-us/library/system.string.aspx

◦ Methodes

Pag. 24

◦ Enkele voorbeeldjes

 Trimmen

 Formatteren

string input = " Steve "; // has a space at the start and end.

string clean1 = input.TrimStart(); // "Steve "

string clean2 = input.TrimEnd(); // " Steve"

string clean3 = input.Trim(); // "Steve“

string shortversion = input.Trim().Substring(0,3); // "Ste"

string original = "Test string";

string capital = original.ToUpper(); // TEST STRING

string lower = original.ToLower(); // test

string string lower2 = "Another Test".ToLower(); // another test

Pag. 25

◦ Opmerking : Immutable

 Alle value types en het type string zijn immutable

 Onderstaand voorbeeld geeft niet het juiste resultaat

 Oplossing

 Een ander voorbeeld van een valueType

string name = “ Hallo world”;

name.Trim(); => daar immutable, geeft string een nieuwe string terug

Console.WriteLine(name); => “ Hallo world”

string name = “ Hallo world”;

name = name.Trim(); => plaats de nieuwe waarde in een variabele

Console.WriteLine(name); => “Hallo world”

Pag. 26

DateTime creationDate = new DateTime(2000, 1, 1);

creationDate = creationDate.AddYears(1);

Console.WriteLine(creationDate);

◦ String concatenatie

 Je kan gebruik maken van + operator

 Of String interpolatie.

 String literal voorafgegaan door een $

 De variabele plaats je tussen {}, na : gebruik je string formatter
(https://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx)

 Of String.Format(te formatteren string, variabele0, variabele1,…)

 Verwijzen naar variabele in de te formatteren string {volgnummer}

string name = "Steve"; decimal totalPrice=10M;

string greet = $"Hello {name}, the total price is {totalPrice:C2}!"; //Hello Steve,…

string name = "Steve";

string greet1 = "Hello " + name + "!"; // Hello Steve!

string name = "Steve";

string greet3 = String.Format("Hello {0}!", name); // Hello Steve!

Pag. 27

https://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx

◦ Escape literals

 Maak je in een string gebruik van een escape character dan \
verdubbelen ofwel laat je string voorafgaan door @-sign.

 @"c:\Docs\Source\a.txt“ of "c:\\Docs\\Source\\a.txt"

Pag. 28

 Nullable Types
◦ Is een value type dat een waarde van het gedefinieerde datatype

kan bevatten + de ‘waarde’ null.
◦ Declaratie (gebruikt het ?)

 int? x = 10; int? y = null;

◦ Toekenning
 x = null; y = 10;

◦ Properties
 HasValue : bool, true als de variabele geen null waarde bevat

 Value : van hetzelfde type als het onderliggende value type. Als HasValue
is true bevat dit de waarde. Indien HasValue false wordt een
InvalidOperationException gethrowed.

◦ Casting naar datatype
 int? x = null; int y = 10;

 if (x.HasValue) y = x.Value;

Pag. 29

http://msdn.microsoft.com/en-us/library/1t3y8s4s(v=VS.80).aspx

 Constanten

◦ Moeten geïnitialiseerd worden bij declaratie

◦ Kunnen niet meer van waarde wijzigen

◦ Zijn impliciet altijd static (static modifier is niet toegelaten in
de declaratie)

Pag. 30

const long size = ((long)int.MaxValue + 1)/4;

 Casting
◦ Impliciete casting

 Enkel indien de waarde hierdoor niet wordt aangepast
 Volgorde : byte, short, int, long, float, double, decimal

◦ Expliciete casting
 Checked : controleert of cast safe is, anders OverFlow Exception

◦ Van string naar numerieke waarde en omgekeerd

◦ Verschil tussen Convert en Parse : Convert.ToInt32 kan overweg met
null waarden, int.Parse throwt ArgumentNullException

Pag. 31

long val = 30000;

int i = (int)val;

int j = checked ((int)val);

int i = 10;

string s = i.ToString();

string s = “100”;

int i = int.Parse(s);

 Boxing en unboxing
◦ Boxing = opslag van value types in de garbage-collected heap.

Boxing is alloceren van een object instance op de heap en het
kopiëren van de waarde in het nieuwe object

◦ Unboxing is het omgekeerde

Pag. 32

int i = 123;

Object o = i; //implicit boxing

Object o = (Object)i; //Explicit boxing

int j = (int)o; //unboxing

 System.DateTime en System.TimeSpan (= struct)
◦ DateTime : maand, dag, jaar en tijd (initieel 01/01/0001 12:00 AM)

◦ TimeSpan : uren, min, sec

Pag. 33

// De constructor met params (year, month, day). De datum wordt

ingesteld op 12:00AM

DateTime dt = new DateTime(2011, 10, 17);

//Vandaag

DateTime dt = DateTime.Today of DateTime.Now (= met tijdstip)

// Welke dag in de week?

Console.WriteLine("The day of {0} is {1}", dt.Date, dt.DayOfWeek);

//De constructor met params (uren, minuten, seconden)

TimeSpan ts = new TimeSpan(4, 30, 0);

//+ operator niet gedefinieerd tussen 2 DateTimes. Wel mogelijk :

DateTime dt = DateTime.Now + new TimeSpan(5,0,0);

dt.AddDays(5) of dt.AddYears(5) of dt.AddMonths(5)

Properties Description

Date Gets the date component of this instance.

DayOfWeek Gets the day of the week represented by this instance.

Now Gets a DateTime object that is set to the current date and time on this computer, expressed

as the local time.

Today Gets the current date.

Pag. 34

Methods Description

AddDays Returns a new DateTime that adds the specified number of days to the value of this instance.

Parse(String) Converts the specified string representation of a date and time to its DateTime equivalent.

ToString() Converts the value of the current DateTime object to its equivalent string representation.

(Overrides ValueType.ToString().)

ToShortDateString() Converts the value of the current DateTime object to its equivalent short date string

representation (dd/mm/yyyy)

 System.DateTime

http://msdn.microsoft.com/en-us/library/wb77sz3h.aspx

Pag. 35

 Adding/Subtracting from dates and times

Pag. 36

 Deel van een DateTime opvragen

Pag. 37

 Formatteren van een DateTime

◦ Meer op https://docs.microsoft.com/en-
us/dotnet/standard/base-types/custom-date-and-time-
format-strings

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings

Properties Description

Days Gets the days component of the time interval represented by the current TimeSpan structure.

Hours Gets the hours component of the time interval represented by the current TimeSpan structure.

Minutes Gets the minutes component of the time interval represented by the current TimeSpan structure.

Seconds Gets the seconds component of the time interval represented by the current TimeSpan structure.

TotalHours Gets the value of the current TimeSpan structure expressed in whole and fractional hours.

TotalMinutes Gets the value of the current TimeSpan structure expressed in whole and fractional minutes. Pag. 38

 System.TimeSpan
Methods Description

Add Returns a new TimeSpan object whose value is the sum of the specified TimeSpan object and this instance.

FromHours Returns a TimeSpan that represents a specified number of hours, accurate to the nearest millisecond.

FromMinutes Returns a TimeSpan that represents a specified number of minutes, accurate to the nearest millisecond.

FromSeconds Returns a TimeSpan that represents a specified number of seconds, accurate to the nearest millisecond.

Parse(String) Converts the string representation of a time interval to its TimeSpan equivalent.

Subtract Returns a new TimeSpan whose value is the difference between the specified TimeSpan object and this

instance.

ToString() Converts the value of the current TimeSpan object to its equivalent string representation

http://msdn.microsoft.com/en-us/library/system.timespan.days.aspx
http://msdn.microsoft.com/en-us/library/system.timespan.hours.aspx
http://msdn.microsoft.com/en-us/library/system.timespan.minutes.aspx
http://msdn.microsoft.com/en-us/library/system.timespan.seconds.aspx
http://msdn.microsoft.com/en-us/library/system.timespan.totalhours.aspx
http://msdn.microsoft.com/en-us/library/system.timespan.totalminutes.aspx
http://msdn.microsoft.com/en-us/library/system.timespan.add.aspx
http://msdn.microsoft.com/en-us/library/system.timespan.fromhours.aspx
http://msdn.microsoft.com/en-us/library/system.timespan.fromminutes.aspx
http://msdn.microsoft.com/en-us/library/system.timespan.fromseconds.aspx
http://msdn.microsoft.com/en-us/library/se73z7b9.aspx
http://msdn.microsoft.com/en-us/library/system.timespan.subtract.aspx
http://msdn.microsoft.com/en-us/library/1ecy8h51.aspx

◦ Format van System.DateTime en System.TimeSpan

 date.ToString(string) methode => string is de format specifier (zie
volgende slide)

 String.Format(“{0:string}”, date) => string is de format specifier

 Maak je in een string gebruik van een escape character dan \
verdubbelen ofwel laat je string voorafgaan door @-sign.

Pag. 39

Pag. 40

Format Description

“:" The time seperator (as defined in regional

settings)

“/" The date separator (as defined in regional

settings.

“\” The escape character.

Ex. DateTime.Now.ToString(“h \\h”) -> 1 h

Or DateTime.Now.ToString(@“h \h”) -> 1 h

Format Description

"d" The day of the month, from 1 to 31.

"dd" The day of the month, from 01 to 31.

"ddd" The abbreviated name of the day of the week.

"dddd" The full name of the day of the week.

"m" The minute, from 0 through 59.

"mm" The minute, from 00 through 59.

"M" The month, from 1 through 12.

"MM" The month, from 01 through 12.

"MMM" The abbreviated name of the month.

"MMMM" The full name of the month.

"yy" The year, from 00 to 99.

"yyy" The year, with a minimum of 3 digits.

"yyyy" The year as a four-digit number.

"yyyyy" The year as a five-digit number.

“H” The hour, using a 24-hour clock from 0 to 23.

“h” The hour, using a 12-hour clock from 1 to 12.

 System.Text.StringBuilder
◦ Kan wel benaderd worden als een array (indexed).

◦ Betere performantie indien de string objecten vaak wijzigen.

◦ Slaat een string op als een array van characters. Editeren
betekent geen nieuw string object

◦ Properties

Pag. 41

Capacity Gets or sets the maximum number of characters that can be

contained in the memory allocated by the current instance.

Chars Gets or sets the character at the specified character

position in this instance.

Length Gets or sets the length of this instance.

 System.Text.StringBuilder (vervolg)
◦ Methodes

Pag. 42

AppendFormat Appends a formatted string, which contains zero or more

format specifications, to this instance. Each format

specification is replaced by the string representation of a Equals Returns a value indicating whether this instance is equal to a

specified object.

Insert Overloaded. Inserts the string representation of a specified

object into this instance at a specified character position.

Remove Removes the specified range of characters from this

instance.

Replace Replaces all occurrences of a specified character or string

in this instance with another specified character or string.

ToString Coverts a StringBuilder to a String

 Rekenkundige operatoren
◦ +,-,*,/,%(rest na deling)

 Toekenningsoperatoren
◦ =, +=,-=,...

 Vergelijkingsoperatoren
◦ <,>,==,>=,<=,!=

 Logische operatoren
◦ &,| : bitwise AND, OR

◦ &&, || : conditionele AND, OR

◦ ^ : XOR

Pag. 44

 ?? Operator
◦ retourneert de linkerkant van de operand als niet null, anders

de rechterkant.

 Null conditional operator
◦ Test op null alvorens een member access te doen

Pag. 45

int? length = customers?.Length; // null if customers is null

Customer first = customers?[0]; // null if customers is null

 Selectie structuren
◦ if (conditie) {statements} else {statements}
◦ switch (conditie) {

case waarde : {Statements} ...
default:{statements}

}

 Iteratie structuren
◦ while (conditie) {statements};
◦ do {statements} while (conditie) ;
◦ for (initialization; condition; increment) {Statements}
◦ foreach (ElementVarDecl in Collection) {Statements}
◦ break; continue;
◦ return;

Pag. 47

Pag. 48

Console.WriteLine("Do you enjoy C# ? (yes/no/maybe)");

string input = Console.ReadLine();

switch (input.ToLower())

{

case "yes":

case "maybe":

Console.WriteLine("Great!"); break;

case "no":

Console.WriteLine("Too bad!"); break;

default:

Console.WriteLine("I'm sorry, I don't understand that!"); break;

}

int hour = DateTime.Now.Hour;

if (hour < 12)

Console.WriteLine("Good morning");

else if (hour < 18)

Console.WriteLine("Good afternoon");

else

Console.WriteLine("Good evening");

Of verkort (?:)

a > 0 ? 5 : 10;

Of null conditional

operator

p? .Name ?? “no

name”;

 Nieuw in C# 7 : pattern matching
◦ Laat matching toe o.b.v. type

Pag. 49

// ----- Assume that spaceItem is of type SpaceType, and that Planet and Star derive from SpaceType.

switch (spaceItem)

{

case Planet p:

if (p.Type != PlanetType.GasGiant)

LandSpacecraft(p);

break;

case Star s when (s.Id > 1000):

AvoidHeatSource(s);

break;

case null:

// ----- If spaceItem is null, processing falls here, even if it is a Planet or Star null instance.

break;

default:

// ----- Anything else that is not Planet, Star, or null.

break;

}

Pattern matching variable

 New in C# 7.0 Pattern matching :
◦ Type pattern : test of een uitdrukking kan worden

geconverteerd naar een opgegeven type en, indien mogelijk,
naar een variabele van dat type.

◦ Constant pattern: test of een expressie evalueert naar een
opgegeven constante waarde.

Pag. 50

 New in C# 7.0 Pattern matching : Pattern matching
◦ var pattern : idem aan type pattern maar de waarde van de

variabele kan alle waarden bevatten, ook null

 In onderstaand vb test de 4de case op null, the empty string, of
any string that contains only white space.

Pag. 51

Pag. 52

for (int i = 0; i<10; i++){

Console.WriteLine(i.ToString());
}

int i =2;

do {

i = i * 2;

Console.WriteLine(i.ToString());

} while (i <= 100);

int i = 2;
while (i <= 100) {

i = i* 2;
Console.WriteLine(i.ToString());

}

Pag. 53

foreach (int age in ages){

if (age==21) break; //verlaat de foreach

if (age==2) continue; //voer vervolg code niet uit, ga naar volgende age

Console.WriteLine(age.ToString());
}

 Array
◦ 1 dimensioneel

 int[] a; //declareert een array van integers

 int[] b = new int[3]; //initializeert een array van 3 integers

 int[] c = new int[3]{3,4,5}; //initialiseert c met de waarden 3,4,5

 int[] d = {3,4,5}; //idem

 int[] e;
e = new int[3];

Pag. 55

◦ Meerdimensioneel
 Rectangular:

 int[,] a =new int[2,3]; //twee rijen – drie kolommen

 int x=a[0,1]

 Jagged: rijen kunnen verschillende lengte hebben
 int[][] a = new int [2][]; //twee rijen – aantal kolommen onbepaald

 a[0]=new int[3]; // 3 kolommen in rij 1

 a[1]=new int[4]; // 4 kolommen in rij 2

 int x = a[0][1];

◦ Operaties
 a.Length //totaal aantal elementen

 a.GetLength(0) //aantal elementen in dimensie 1

 Array.Copy(b,a,2) //kopieert b[0..1] naar a

 Array.Sort(b); //sorteert b in oplopende volgorde

Pag. 56

 Definitie

 System.Exception

 Throwen van een exception

 Afhandelen van een exception

Pag. 58

 Definitie
◦ Exception

 Indicatie van een onverwacht probleem at run-time

 Zonder foutafafhandeling wordt programma afgesloten met een run-
time error.

◦ Exception classes zorgen voor een gestructureerde
foutafhandeling (error-handling)

◦ Errorhandling gebeurt dmv van error-objecten. Deze kunnen
geworpen (thrown) worden op de plaats waar de fout zich
voordoet en opgevangen (caught) op de plaats waar ze moet
verwerkt worden.

◦ De exception class en subclasses hebben een hiërarchische
structuur

Pag. 59

Pag. 60

 Fouten genereren uitzonderingen (exceptions)
◦ Als er een fout optreedt, wordt een Exception object

gecreëerd, met informatie over de uitzondering.

Pag. 61

Exception is een basisklasse.
Zo kan je je eigen Exception
klassen schrijven.

 Fouten genereren uitzonderingen (exceptions)
◦ Het Exception-object bevat informatie over de fout, en terwijl

de gebeurtenis door de lagen heen naar boven borrelt, wordt
de gebeurtenis ingepakt in steeds meer details. Het komt er
ruwweg op neer dat de Application_Error-uitzondering de
Page_Error-uitzondering bevat, die weer voortvloeit uit de
basis-Exception, die het omhoog borrelen van de gebeurtenis
in gang heeft gezet.

 Fouten dien je zoveel mogelijk op te vangen
 Igv niet opgevangen fouten, leidt de gebruiker om naar

een fout pagina
 Indien gewenst kan je niet opgevangen fouten loggen

op applicatie niveau

Pag. 62

 System.Exception properties : info over fout
◦ Message : foutmelding gekoppeld aan uitzondering

 Default boodschap : geassocieerd met exception type

 Gecustomiseerde boodschap : doorgegeven aan constructor van object

◦ Source : naam van applicatie of object die fout veroorzaakt heeft

◦ TargetSite : naam methode die fout gegenereerd heeft

◦ StackTrace : exception historiek.1 string die een sekwentiële lijst van
methodes bevat, die op moment dat de exception zich voordoet,
nog niet volledig zijn uitgevoerd

◦ InnerException : voor geneste exceptions

◦ HelpLink : link naar Help file geassocieerd met fout

◦ ToString : retourneert een string met de naam van de exception, de
exception message, de naam van de inner exception en de stack.

Pag. 63

 Throwen van een exception
◦ impliciet: door de CLR, ten gevolge van ongeldige operations:

delen door nul, array access met een foute index, member
access met een null reference …. Deze maakt een Exception
object aan, met informatie over de fout

◦ expliciet: door de programmeur zelf…

Pag. 64

public int BerekenGemiddelde(int totaal , int aantal)

{

if (aantal <= 0)

throw new ArgumentException(“Aantal moet groter zijn dan nul”);

else

return totaal/aantal;

}

 Throwing
◦ 2 strekkingen

 Enkel in uitzonderlijke gevallen. Werk anders verder met
defaultwaarden

 Van zodra het gewenste gedrag niet kan worden uitgevoerd.

 Foutieve inputwaarden

 throw een ArgumentException

 Iets lukt niet en je kan het ook niet verhelpen

 bvb opslaan van een gebruiker maar database niet beschikbaar, creatie
gebruiker en gebruiker bestaat reeds.

 Afhandelen van exceptions

Pag. 66

try

{ //protected statement sequence
…..

}

catch (type of exception ex)

{

…

}

catch (…)

{...}

finally

{

…

}

 Afhandelen van exceptions (meerdere
exceptionhandlers)
◦ .NET bevat tal van voorgedefinieerde exception klassen die

afgeleid zijn van de basis klasse Exception in de System
Namespace

◦ In foutafhandeling kan je meerdere catch blokken voorzien,
die elk een specifieke fout afhandelen

◦ Volgorde van catch blokken is belangrijk! Runtime gaat op
zoek naar eerste catch blok met een type fout waarvoor de “is
een “ regel geldt.

◦ Zoek op in help : Elke methode die exceptions throwt heeft
een sectie exceptions die de mogelijke exceptions beschrijft

Pag. 67

 Afhandelen van exceptions
◦ Hoe gaat runtime op zoek naar handlers indien je werkt met

geneste Try blokken ?
 Bij fout wordt de uitvoering van code onmiddellijk afgebroken

 De runtime gaat op zoek naar fouthandler in bijhorend catch
blokken. Als bijhorende handler gevonden wordt, wordt fout
afgehandeld en wordt verdergegaan met uitvoering van
programma

 Als er geen geschikte handler is voor fout in de bijhorende catch
blokken, dan wordt de verwerking van de omvattende methodes
(try blokken) afgebroken tot een corresponderende handler
gevonden

 Als er geen omvattende try blokken zijn met een passende
handler, dan handelt de runtime zelf de fout af met een runtime
error

Pag. 68

 Opvangen van fouten
◦ try … catch…finally

 Voorbeeld : delen door 0, index out of range,…

 In de Help kan je voor elke methode terugvinden wat de
mogelijke exceptions zijn

 Zoek in Help naar division operator http://msdn.microsoft.com/en-
us/library/aa691373(v=vs.71).aspx

 Onderaan of in aparte Exceptions Sectie worden de exceptions
beschreven

Pag. 69

http://msdn.microsoft.com/en-us/library/aa691373(v=vs.71).aspx

 try … catch…finally

Pag. 70

◦ try … catch…finally

 Enkele tips

 Ontwerp code met exceptionhandling

 Als je een exception moet opvangen, gebruik steeds de meest
specifieke exception (niet gewoon Exception)

 Maak NOOIT een leeg catch blok aan

 Geef aan gebruikers bruikbare foutmeldingen, zodat gebruiker weet
hoe hij fout kan aanpassen

 Werp waar mogelijk .Net Exceptions. Werp enkel custom exceptions
als je meer informatie wenst te geven. Geef dan ook de
innerexception mee!

 Vergeet het finally blok niet waar nodig. Zorg voor clean-up. (using is
vaak een goed alternatief)

 Meer op : http://msdn.microsoft.com/en-us/library/5b2yeyab.aspx

Pag. 71

http://msdn.microsoft.com/en-us/library/5b2yeyab.aspx

 Afhandelen van exceptions

◦ 2 gouden regels
 Handel enkel exceptions af als je er echt iets kan aan doen

 Aan de meeste exceptions kan je niets doen

◦ Zie later : wat met runtime exceptions in webapplicaties :
loggen en gebruiksvriendelijke fout tonen aan gebruiker

Pag. 72

 Custom Exception
◦ Maak een nieuwe klasse aan, erft van een base exception

◦ Gebruik suffix Exception voor de klassenaam

◦ Maak exception serializable

◦ Aanmaken : voeg een nieuwe klasse toe, verwijder inhoud file,
rechtsklik > Add snippet > Visual C# > Exception. Pas de naam
van de exception aan en klik tab.

Pag. 73

 Exception filters
◦ Voegen condities toe aan een catch block

◦ https://www.thomaslevesque.com/2015/06/21/exception-
filters-in-c-6/

Pag. 74

https://www.thomaslevesque.com/2015/06/21/exception-filters-in-c-6/

 https://docs.microsoft.com/en-
us/dotnet/csharp/whats-new/csharp-8

 Om C#8.0 te kunnen gebruiken
◦ Rechtsklik op project > Edit Project File

◦ Voeg onderstaande toe

◦ We bespreken de belangrijkste nieuwigheden

Pag. 75

https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-8

 Switch expressions (ter vervanging van switch case)
◦ Case en : worden vervangen door =>

◦ De default case wordt vervangen door _

◦ Geen break statement

Pag. 76

 Switch expressions (ter vervanging van switch case)
◦ Case en : worden vervangen door =>

◦ De default case wordt vervangen door _

◦ Geen break

◦ Voorbeeld

Pag. 77

 Switch expressions
◦ Die gebruik maken van property patterns : test op het type en

de waarde van een property

Pag. 78

 Switch expressions
◦ Tuple matching

 Nog meer voorbeelden op
: https://docs.microsoft.com/en-
us/dotnet/csharp/tutorials/pattern-matching

Pag. 79

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/pattern-matching

 Null reference
◦ Bad code => gives a runtime error

◦ Oplossing : null reference. Voeg volgende lijn toe aan .csproj :
<Nullable>enable</Nullable>

 2 warnings.

◦ Wegwerken van de warnings, kan op 2 manieren

Pag. 80

De variabele s kan null waarde bevatten

De variabele s kan geen null waarde bevatten

De compiler verzekert dat een not null
waarde wordt toegekend bij declaratie of in
constructor

Een mooi voorbeeld: https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/nullable-reference-types

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/nullable-reference-types

 Indices and ranges (vanaf .net core 3.0)
 System.Index: staat voor een index in een reeks.

 De operator ^: index relatief aan het einde van een reeks.

 System.Range: een subbereik van een reeks.

 De operator Range (..) : geeft begin en einde van een bereik op als
operanden.

 Meer op
https://docs.microsoft.com/
en-us/dotnet/csharp/
tutorials/ranges-indexes

Pag. 81

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/ranges-indexes

 Null-coalescing assignment operator ??= (vanaf .net core
3.0)

 wijst de waarde van de rechteroperand alleen toe aan de
linkeroperand als de linkeroperand nul oplevert.

Pag. 82

 Tutorials :
◦ https://www.microsoftvirtualacademy.com/

◦ http://www.csharp-station.com/Tutorial.aspx

 C# Programming Guide :
◦ http://msdn.microsoft.com/en-us/library/67ef8sbd.aspx

 C# Reference :
◦ http://msdn.microsoft.com/en-us/library/618ayhy6.aspx

 Pluralsight : C# Fundamentals

Pag. 84

https://www.microsoftvirtualacademy.com/
http://www.csharp-station.com/Tutorial.aspx
http://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
http://msdn.microsoft.com/en-us/library/618ayhy6.aspx

